Math, asked by mahajan1276, 10 months ago


Two numbers differ by 3. The sum of the greater number and twice the smaller number is 15. Find the smaller number

Answers

Answered by ileshchauhan1212
2

Answer:

hope it will be helpful

Attachments:
Answered by TRISHNADEVI
4

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \: Given, \: }} \\  \\  \text{ \red{The difference between the numbers = 3}} \\  \\  \text{ \red{The sum of the greater number and twice }} \\  \text{ \red{the smaller number = 15}} \\  \\  \underline{ \mathfrak{ \:Suppose, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \: \text {\pink{The greater number = x}} \\  \\  \:  \:  \:  \:  \:  \:  \:   \text{ \pink{The smaller number = y}}

 \bold{ \underline{ \:  \: A.T.Q., \:  \: }} \\  \\  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \sf{ \blue{x - y = 3 \:  \:  \:  ------> (1)}} \\  \\  \bold{And, } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \blue{x + 2y  = 15  \:  \: -----> (2)}} \\  \\  \underline{ \bold{ \: Now, \: }} \\  \\  \sf{ \blue{ (1) \implies x = 3 + y  -----> (3)}}

 \underline{ \text{ \: Putting the value of  \pink{x} from eq. (3) in eq.(2), we get, \: }} \\  \\  \tt{(2) \implies x + 2y  = 15} \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{ \implies (3 + y) + 2y = 15} \\  \\ \:  \:  \:  \:  \:  \:  \:  \tt{ \implies 3 + y + 2y = 15} \\  \\   \:  \:  \:  \:  \:  \:  \:\tt{ \implies 3 + 3y = 15  } \\  \\   \:  \:  \:  \:  \:  \:  \:\tt{\implies 3y = 15 - 3 } \\  \\  \:  \:  \:  \:  \:  \:  \: \tt{\implies 3y = 12} \\  \\  \:  \:  \:  \:  \:  \:  \: \tt{ \implies y = \frac{12}{3} } \\  \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \tt{\therefore \:  \:  \pink{ y = 4}} \\  \\  \therefore  \:  \:  \text{ \pink{The smallest number, y =  \underline {\: 4  \:} }}

 \underline{\underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: }}\\  \\  \underline{ \mathfrak{ \:  \: Again, \:  \: }} \\  \\   \underline{ \text{ \: Putting the value of  \pink{y} in eq. (3), we get, \: }} \\ \\   \tt{(3) \implies x = 3 + y } \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{\implies x = 3 + 4 } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{\therefore \:  \:  \pink{ x = 7}} \\  \\ \therefore \:  \:  \text{ \pink{The greater number =  \underline {\: 7 \: }}}

Similar questions