Math, asked by PhysicsNewton67, 10 months ago

Two numbers ratio of 2:3 . If the larger number is 30 more than half of the smaller, find the numbers?

Answers

Answered by atharvayajur82
4

Answer:

Hey mate here your answer

Step-by-step explanation:

Let the 2 numbers be x and y

Sox:y=2:3

3x=2y

y-x/2=30

2y-x=60

3x-x=60

2x=60

x=60/2=30

First number=30

Second Number=30×3/2=45

Please mark me brainliest

Answered by Anonymous
14

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given two numbers in the ratio 2:3
  • The larger number is 30 more than half of the smaller

To Find:

  • We have to find both the numbers

Solution:

Let the smaller number = 2x

Larger number = 3x

________________________________

\underline{\large\mathfrak\blue{According \: to \: the \: Question :}}

\hookrightarrow \sf{\: Larger \: Number = 30 + \left (\dfrac{Smaller \: Number}{2} \right )}

Putting their respective values we get

\hookrightarrow \sf{\: 3x = 30 + \left ( \dfrac{2x}{2} \right ) }

Now Solving the Equation

\hookrightarrow \sf{\: 3x = 30 + x }

\hookrightarrow \sf{\: 3x - x = 30}

\hookrightarrow \sf{\: 2x = 30}

\hookrightarrow \sf{\: x = \dfrac{30}{2}}

\hookrightarrow \boxed{\sf{x = 15}}

_______________________________

Therefore:

\implies \sf{Smaller \: Number = 2 \times 15}

\implies \sf{30} \\

\implies \sf{Larger \: Number = 3 \times 15}

\implies \sf{45} \\ \\

: \implies \boxed{\mathfrak\red{ \: Larger \: Number = 45}}

: \implies \boxed{\mathfrak\red{ \: Smaller \: Number = 30}}

________________________________

\huge\mathfrak\green{Verification:}

(1)\implies \sf{Ratio = \dfrac{30}{45} = \dfrac{2}{3}} \\

(2)\begin{cases} </p><p>\implies \sf{30 + \left ( \dfrac{Smaller \: Number}{2} \right )} \\ \\ </p><p>\implies \sf{ 30 + \left ( \dfrac{30}{2} \right )} \\ \\</p><p>\implies \sf{30 + 15 } \\ \\</p><p>\implies \sf{45 = Larger \: Number}</p><p>\end{cases}

Similar questions