Math, asked by madhulatarai, 6 months ago

two objects of mass 1kg and 4 kg have equal momentum what is the ratio of there kinetic energy ?​

Answers

Answered by ram31166
0

Answer:

KE1:KE2 = v1:v2

Step-by-step explanation:

I guess this is the answer

Answered by brainlyofficial11
251

 \huge  ✯  { \underline{ \underline{\bold{ ᴀɴsᴡᴇʀ }}}} ✯

given

☞︎︎︎ two objects of mass 1 kg and 4 kg have equal momentum

________________________

to find

☞︎︎︎ ratio of kinetic energy possessed by two objects

________________________

solution

________________________

first we have to derive relation between kinetic energy and momentum!

  • kinetic energy = K.E
  • momentum = M
  • mass = m
  • velocity = v

kinetic energy : work done by an object due to its Motion is called kinetic energy

 \boxed  { \pink{\bold{K.E =  \frac{1}{2} m {v}^{2} }}} \\

momentum : product of mass and velocity of an object is called momentum

 \boxed{ \pink{ \bold{M = mv}}}

_________________________

we know that,

 \bold{K.E =  \frac{1}{2}m {v}^{2}  } \\

now, multiply m numerator and denominator of LHS

 \bold{ \implies K.E =  \frac{m {v}^{2}  \times m}{2 \times m} } \\  \\ \bold{ \implies K.E = \frac{ {m}^{2}  {v}^{2}  }{2m} } \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ \implies K.E =  \frac{ {(mv)}^{2} }{2m} } \:  \:  \:  \:  \:  \:  \:

and we know that,

mv = M, momentum

 \bold{ \implies \:K.E =   \frac{ {M}^{2} }{2m} } \:  ......(i)  \\

__________________________

now, we have

  • mass of first object m1 = 1kg
  • mass of second object m2 = 4kg
  • momentum of both object is equal

➪ M1 = M2 .....(ii)

kinetic energy possessed by object first, K.E1

from equation (i)

{ \tt{ \implies \:K.E =   \frac{ {M}^{2} }{2m} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  } \\   \\  { \tt \implies \: K.E 1 = \frac{ M1^{2} }{2m1} } \:   \:  \:  \:  \: \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \\  \\ { \tt \implies \: K.E 1 = \frac{ M1^{2} }{2 \times 1}} \: \:  \:  \:  \:  \:  \:  \:   \:   \:  \:  \:  \:  \: \:  \:  \:   \:  \: \:  \:  \\  \\ { \tt  \implies \boxed{ { \tt\red{ K.E 1 = \frac{ M1^{2} }{2}}}} }\:  \:  .........(iii)

kinetic energy possessed by object second, K.E2

from equation (i)

{ \tt{ \implies \:K.E =   \frac{ {M}^{2} }{2m} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \\  \\  { \tt{ \implies \:K.E2=   \frac{ {M2}^{2} }{2m2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \:  } \\  \\ { \tt{ \implies \:K.E2 =   \frac{ {M2}^{2} }{2 \times 4} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    } \\  \\{ \tt{ \implies \boxed{ { \tt\red{ \:K.E2 =   \frac{ {M2}^{2} }{8}}}}}} \: ..........(iv)

_________________________

now, we have to find ratio of kinetic energy possessed by both objects.

➪ K.E1 : K.E2

 {\tt ratio \: of \: K.E1 \: and \: K.E2 \:  =  \frac{K.E1}{ K.E2} } \\

now, put tha value of K.E1 and K.E2 from eq. (iii) and (iv)

{ \tt \implies \:  \frac{K.E1}{K.E2} =    \frac{ {M1}^{2} }{2}   \div \frac{ {M2}^{2} }{8}} \\  \\  { \tt \implies  \frac{K.E1}{K.E2} = \frac{{M1}^{2}}{2}  \times \frac{8}{{M2}^{2}}  }

from equation (ii) we know that,

K.E1 = K.E2

{ \tt \implies \frac{K.E1}{K.E2} = \frac{\cancel{{M1}^{2}}}{2}  \times \frac{8}{ \cancel{{M1}^{2}} }}  \:  \:  \:   \:  \:  \: \:  \: \\  \\ { \tt \implies \frac{K.E1}{K.E2} = \cancel{  \frac{8}{2} } =  \frac{4}{1} } \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \\  \\   \implies \boxed{   \orange{\bold{  K.E1 \: :  \: K.E2 = 4 :1 }}  }

hence, ratio of their kinetic energy is 4:1

Similar questions