two of the eigenvalues of 3×3 matrix whose determinant is equal to 4 are -1 and 2 the third eigen value of the matrix is equal to
Answers
SOLUTION
GIVEN
Two of the eigen values of 3×3 matrix whose determinant is equal to 4 are -1 and 2
TO DETERMINE
The third eigen value of the matrix
CONCEPT TO BE IMPLEMENTED
The product of the eigen values of a square matrix A is det A
EVALUATION
Here it is given that two of the eigen values of 3×3 matrix whose determinant is equal to 4 are -1 and 2
Let c be the third eigen value of the matrix
Now we know that the product of the eigen values of a square matrix A is det A
So
c × ( - 1 ) × 2 = det A
⇒ - 2c = 4
⇒ c = - 2
FINAL ANSWER
Hence the required third eigen value of the matrix = - 2
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
The eigen values of the matrix A are 2,3,5. Then the eigen values of adj A are
https://brainly.in/question/31051731
2. let A and B are square matrices such that AB=I then zero is an eigen value of
https://brainly.in/question/24255712
Answer:
please brainliest my answer ✌✌
please thanks my answer ❤❤
please votes ✡️