Math, asked by qwertydude, 1 year ago

Two of the zeros of the polynomial
({a}^{2}  + 9) {x}^{2}  + 13x - 6a
are
 \alpha  \:  \:and \:  \:  \beta
If
 \alpha  =  \frac{1}{ \beta }
Find 'a'​

Answers

Answered by preeth3
2

thankyou for asking me question

hope this solution would help you,if you have any doubt please let me know ,i(preeth) will help you

mark me as brainliest

Attachments:

qwertydude: Thanks a lot
Answered by muskanc918
13

\huge{\mathsf{\underline{\underline{Answer:-}}}}

\large{\boxed{\boxed{\:a= - 3}}}

\sf{\underline{\star{Given:}}}

Two of the zeros of the polynomial

({a}^{2} + 9) {x}^{2} + 13x - 6a

are  \alpha \: \:and \: \: \beta

and  \alpha = \frac{1}{ \beta }

\sf{\underline{\star{To\:find:}}}

value of 'a'.

\sf{\underline{\star{Solution:}}}

Let p(x)=({a}^{2} + 9) {x}^{2} + 13x - 6a

Also,

 \alpha = \frac{1}{ \beta } .......(i)

\large\sf{Product\:of\:zeroes =  \frac{constant\:term}{coefficient\:of\:{x}^{2}}  }

\large\sf{\implies\:\alpha \times \beta = \frac{-6a}{  ({a}^{2} + 9)  }}

\large\sf{ \implies    \frac{1}{ \beta }  \times \beta  =  \frac{ - 6a}{ ({a}^{2}  + 9)}........using \:(i)  }

\large\sf{\implies   1 = \frac{ - 6a}{ ({a}^{2}  + 9)}  }

\large\sf{ \implies      {a}^{2}  + 9 =  - 6a  }

\large\sf{\implies      {a}^{2}+ 6a + 9 = 0 }

\large\sf{ \implies  {a}^{2} + 2 \times \ a \times 3 +{3}^{2} = 0}

\large\sf{ \implies {(a +3) }^{2}= 0  }

\large\sf{\implies a + 3 = 0}

\large\sf{\implies \:a = -3}

Hence, the value of 'a' is -3.

Similar questions