Physics, asked by gayu8866, 11 months ago


Two open organ pipes A and B of same length 0.5 m are blown with air at different temperatures so as to produce 6 beats per second. A is blown with air at 27 C and B is blown with air at higher temperature t C. the value of t is?(assume the fundamental mode for both)

Answers

Answered by shadowsabers03
0

\displaystyle\Large\boxed {\sf {\quad t=37.7\quad}}

Solution:-

The fundamental frequency of an open pipe of length L and velocity of sound through it, v, is given by,

\displaystyle\longrightarrow\sf{\nu=\dfrac {v}{2L}}

Given two open pipes A and B having same length 0.5 m.

Let,

  • \displaystyle\sf {\nu_{A}=} fundamental frequency of the pipe A.

  • \displaystyle\sf {\nu_{B}=} fundamental frequency of the pipe B.

  • \displaystyle\sf {v_A=} velocity of sound in pipe A.

  • \displaystyle\sf {v_B=} velocity of sound in pipe B.

Assume that \displaystyle\sf {\nu_B\ \textgreater\ \nu_A.} Because given that the temperature at pipe B (t °C) is higher than that at pipe A.

Given that the no. of beats produced is 6. So,

\displaystyle\longrightarrow\sf{\nu_B-\nu_A=6}

\displaystyle\longrightarrow\sf{\dfrac {v_B}{2\times0.5}-\dfrac {v_A}{2\times 0.5}=6}

\displaystyle\longrightarrow\sf{v_B-v_A=6}

\displaystyle\longrightarrow\sf{v_B=v_A+6\quad\quad\dots (1)}

Well, the relation between the velocity of sound v and temperature T is as follows.

\displaystyle\longrightarrow\sf{v=\sqrt{\dfrac {\gamma RT}{M}}\quad\quad\dots (2)}

where,

  • \displaystyle\sf {\gamma=\dfrac {C_p}{C_v},} known as adiabatic constant.

  • R = universal gas constant

  • M = molecular mass

From this we get the following proportionality,

\displaystyle\longrightarrow\sf{v\propto\sqrt{T}}

And therefore,

\displaystyle\longrightarrow\sf{\dfrac {v_B}{v_A}=\sqrt{\dfrac {T_B}{T_A}}\quad\quad\dots (3)}

Here,

  • \displaystyle\sf {T_A=27^oC=300\ K}

  • \displaystyle\sf {T_B=t^oC=(t+273)\ K}

Then from (3),

\displaystyle\longrightarrow\sf{\dfrac {v_B}{v_A}=\sqrt{\dfrac {t+273}{300}}}

\displaystyle\longrightarrow\sf{\dfrac {\left (v_B\right)^2}{\left (v_A\right)^2}=\dfrac {t+273}{300}}

From (1),

\displaystyle\longrightarrow\sf{\dfrac {\left (v_A+6\right)^2}{\left (v_A\right)^2}=\dfrac {t+273}{300}}

\displaystyle\longrightarrow\sf{t=300\cdot\dfrac {\left (v_A+6\right)^2}{\left (v_A\right)^2}-273\quad\quad\dots (4)}

But we have to find out the value of \displaystyle\sf {v_A.}

In the case of air,

  • \displaystyle\sf {\gamma=1.4}

  • \displaystyle\sf {M=0.03\ kg\ mol^{-1}}

And we know that,

  • \displaystyle\sf {R=8.314\ J\ K^{-1}\ mol^{-1}}

Then from (2),

\displaystyle\longrightarrow\sf{v_A=\sqrt{\dfrac {1.4\times8.314\times300}{0.03}}}

\displaystyle\longrightarrow\sf{v_A=341\ m\ s^{-1}}

This is the normal speed of sound too. \displaystyle\sf {(T_A=300\ K} is actually the normal atmospheric temperature.)

So (4) becomes,

\displaystyle\longrightarrow\sf{t=300\cdot\dfrac {\left (341+6\right)^2}{\left (341\right)^2}-273}

\displaystyle\longrightarrow\sf{t=300\cdot\dfrac {\left (347\right)^2}{\left (341\right)^2}-273}

\displaystyle\longrightarrow\sf{t=300\cdot\dfrac {120409}{116281}-273}

\displaystyle\longrightarrow\sf {\underline {\underline {t=37.7}}}

Similar questions