Math, asked by IntelligentRiya, 1 year ago

Two opposite angles of a parallelogram are 3 x -2 degree and 50 degree - x .Find the number of degree in each angle???

Help me please....​

Answers

Answered by DhanyaDA
43

Correct question:

Two opposite angles of a parallelogram are

(3x-2) and (50-x)

Then find each angle of the parallelogram

Explanation:

Let us consider //gram ABCD

\sf \angle A=(3x-2) \: and \: \angle C=(50-x)

In a paralellogram ,

\underline{\bf opposite\: angles \: are \: equal}

\bullet \angle A=\angle C

\bullet \angle B=\angle D

Equating

 \longrightarrow \: \sf \: 3x - 2 = 50 - x

 \longrightarrow \: \sf \: 3x + x = 50 + 2

 \longrightarrow \: \sf \: 4x = 52

 \longrightarrow \: \sf \: x =  \dfrac{52}{4}

 \longrightarrow \: \boxed{ \sf \: x = 13 \degree }

Therefore

\sf \angle A=\angle C=3(13)-2=37\degree

we know that

\boxed{\bf sum \: of \: adjacent\: angles =180\degree}

\sf \angle B=\angle D=180-37=143\degree

Angles of the parallelogram are 37°,

143°,37°,143°

Answered by Anonymous
238

\bold{\underline{\underline{\huge{\sf{AnsWer:}}}}}

Measure of angle A = 37 °

Measure of angle B = 143°

Measure of angle C = 37°

Measure of angle D = 143°

\bold{\underline{\underline{\huge{\sf{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • Two opposite angles of a parallelogram
  1. (3x - 2)°
  2. (50 - x)°

To FiNd :

  • Measure of each angle of the parallelogram.

SoLuTiOn :

In ◼️ ABCD,

  1. m \bold{\angle{A}} = (3x - 2)°
  2. m \bold{\angle{C}} = (50- x)°

Property :

\bold{\sf{\large{In\:a\:parallelogram\:opposite\:angles\:are\:congruent}}}

\longrightarrow \bold{\sf{\angle{A\:=\:m{\angle{C}}}}}

Block in the values,

\longrightarrow\bold{\sf{3x-2\:=\:50-x}}

\longrightarrow \bold{\sf{3x+x\:=\:50+2}}

\longrightarrow \bold{\sf{4x=52}}

\longrightarrow \bold{\sf{x\:=\:{\dfrac{52}{4}}}}

\longrightarrow \bold{\sf{x=13}}

Substitute x = 13 in the measures of angles.

° m\bold{\angle{A}} = 3x - 2

m\bold{\angle{A}} = 3(13) - 2

m \bold{\angle{A}} = 39 - 2

m \bold{\angle{A}} = 37°

m \bold{\angle{A}} = m \bold{\angle{C}}

° m \bold{\angle{C}} = 37°

Property :

\bold{\sf{\large{Adjacent\:angles\:of\:parallelogram\:are\:supplementary}}}

\bold{\sf{Angle\:A\:+\:Angle\:B\:\:\:And\:\:Angle\:C\:+\:Angle\:D}}\bold{\sf{\underbrace{Pairs\:of\:adjacent\:angles\:of\:parallelogram}}}

\longrightarrow\bold{\sf{\angle{A\:+\:{\angle{B\:=\:180}}}}}

Block in the values,

\longrightarrow \bold{\sf{37\:+\:B\:=\:180}}

\longrightarrow \bold{\sf{B\:=\:180\:-37\:}}

\longrightarrow \bold{\sf{B\:=\:143}}

° Measure of angle B = 143°

\longrightarrow\bold{\sf{C\:+\:D\:=\:180}}

Block in the values,

\longrightarrow \bold{\sf{37\:+\:D\:=\:180}}

\longrightarrow \bold{\sf{D\:=\:180\:-37\:}}

\longrightarrow \bold{\sf{D\:=\:143}}

° Measure of angle D = 143°

Attachments:
Similar questions