Math, asked by pankajsingh6857, 1 year ago

Two opposite angles of a parallelogram are (5x-21°) and (x+75°) find the measures of the angles

Answers

Answered by Brâiñlynêha
3

\huge\mathbb{SOLUTION:-}

\bold{Given}\begin{cases}\sf{Opposite\: angles\:of\: parallelogram}\\ \sf{ \implies 5x-21{}^{\circ}\:\:and\:\: x+75{}^{\circ}}\end{cases}

  • it is given that the opposite angles of parallelogram

  • we know that the sum of opposite angles of parallelogram

  • =>180°

Know :-

\bf\underline{\underline{According\:to\: question:-}}

\sf\implies 5x-21{}^{\circ}+x+75{}^{\circ}=180{}^{\circ}\\ \\ \sf\implies 6x+54{}^{\circ}=180{}^{\circ}\\ \\ \sf\implies 6x=180{}^{\circ}-54{}^{\circ}\\ \\ \sf\implies 6x=126{}^{\circ}\\ \\ \sf\implies x=\cancel{\frac{126}{6}}\\ \\ \sf\implies x=21{}^{\circ}

  • The value of x is 21°

  • Now The angels of prallelogram

\sf\underline{\purple{\longmapsto 5x-21{}^{\circ}}}

\sf \implies 5\times 21{}^{\circ}-21{}^{\circ}\\ \\ \sf\implies  105{}^{\circ}-21{}^{\circ}\\ \\ \sf\implies 84{}^{\circ}

\sf\underline{\purple{\longmapsto x+75{}^{\circ}}}

\sf\implies 21{}^{\circ}+75{}^{\circ}\\ \\ \sf\implies 96{}^{\circ}

  • The two opposite angles of paralleogram is 84° and 96°

\boxed{\boxed{\boxed{\sf{\red{VERIFICATION}}}}}

  • Let me check of their sum is 180° then it is correct

\sf\longmapsto 84{}^{\circ}+96{}^{\circ}=180{}^{\circ}\\ \\ \sf\longmapsto 180{}^{\circ}=180{}^{\circ}

\sf\:\:\:\: L.H.S=R.H.S\:\:\:\:\: \mathfrak{\underline{ hence\: vertified !!}}

\boxed{\boxed{\mathfrak{\purple{Angles=84{}^{\circ}\:\:and\:\: 96{}^{\circ}}}}}

#BAL

#answerwithquality

Similar questions