Math, asked by rkawasthi909, 3 months ago

Two opposite angles of a parallelogram are 6x-170

and x+630

. Find the measure of each

angle of the parallelogram.​

Answers

Answered by MrMonarque
18

\Large{\underline{\bf{Given:}}}

✒️ Two Opposite Angles of a Parallelogram are (6x-170)° and (x+630)°

\Large{\underline{\bf{To\;Find:}}}

☞ Measure of each angle of the Parallelogram.

\huge{\underline{\underline{\bf{Solution:}}}}

Let, ABCD is the Parallelogram

∠DAB = 6x-170° & ∠DCB = x+630°

W.K.T

Opposite Angles of Parallelogram are Equal

☞ ∠DAB = ∠DCB & ∠ABC = ∠ADC

→\;{\sf{∠DAB = ∠DCB}}

→\;{\sf{6x-17° = x+63°}}

→\;{\sf{6x-x = 63+17}}

→\;{\sf{5x = 80}}

→\;{\sf{x = \frac{80}{5}}}

→\;{\sf{x = 16}}

∠DAB = 6(16)-17 ➝ 79°

∠DCB = 16+63 ➝ 79°

W.K.T

Adjacent Angles of Parallelogram are Supplementary.

→\;{\sf{∠ABC + ∠DCB = 180°}}

→\;{\sf{∠ABC = 180°-79°}}

→\;{\sf{∠ABC = 101°}}

So, ∠ABC = ∠ADC = 101°

\Large{\green{\underline{\underline{\mathfrak{AnSweR:}}}}}

All The Angles of Parallelogram are

◕➜\;\huge{\red{\mathfrak{79°,101°,79°,101°}}}

Hope It Helps You ✌️

Attachments:
Similar questions