Math, asked by darrenjimmy2020, 10 months ago

Two parallel sides of a trapezium are 120 cm and 154 cm. The other two sides are 50 cm and 52 cm each. Find the area of the trapezium.

Answers

Answered by Anonymous
15

Step-by-step explanation:

Let ABCD be the trapezium such that AB and CD are parallel, witj AB = 120 cm. BC = 52 cm, CD = 154 cm and DA = 50 cm. ... So area of trapezium ABCD = (120+154)*48/2 = 274*24 = 6576 sq cm.

Answered by BrainlyTornado
4

ANSWER:

Area = 6576 cm²

GIVEN:

b₁ = 120 cm

b₂ = 154 cm

OTHER SIDES = 50 cm, 52 cm

TO FIND:

AREA OF THE TRAPEZIUM.

FORMULA:

Area of a trapezium = ((b₁ + b₂) × h)) / 2

EXPLANATION:

y + z + 120 = 154

From Pythagoras theorem:

y² + x² = 50²

z² + x² = 52²

Substitute y = 34 - z in y² + x² = 50²

(34 - z)² + x² = 50²

Substitute x² = 52² - z² in (34 - z)² + x² = 50²

(34 - z)² + 52² - z² = 50²

1156 - 68z + z² - z² + 2704 = 2500

1156 - 68z + 2704 = 2500

3860 - 68z = 2500

3860 = 68z + 2500

68z = 3860 - 2500

68z = 1360

z = 20

Substitute z = 20 in x² = 52² - z²

x² = 2704 - 20²

x² = 2704 - 400

x² = 2304

x = 48

Area = ((120 + 154) × 48) / 2

Area = (274 × 48) / 2

Area = 274 × 24

Area = 6576 cm²

Area of the trapezium = 6576 cm².

NOTE : DIAGRAM IN ATTACHMENT.

Attachments:
Similar questions