Math, asked by chaman2006, 10 months ago

two parallel sides of the trapezium are 60 cm and 77 cm and the other sides are 25 cm and 26 cm.Find the area of the trapezium

Answers

Answered by cheatsubscriberz
6

Let ABCD is a trapezium in which AB = 77 cm, BC = 26 cm, CD = 60 cm, DA = 25 cm

Draw CE ||  AD

Now, ACDE is a parallelogram

BE = AB - DC = 77- 60 = 17 cm

In ∆BEC,

Let a = 25 cm , b = 17 cm and c = 26 cm  

Semi perimeter of Δ (s) = (a + b + c)/2

s = (a + b + c)/2  

s = (25 + 17 + 26)/2

s = 68/2  

s = 34 cm

By using Heron's formula :  

Area of Δ , A = s√(s − a)(s − b)(s − c)  

A = √34(34 - 25) (34 - 17) (34 - 26)

A = √34 × 9 × 17 × 8

A = √(2 × 17) × (3 × 3) × 17 × (2 × 4)

A = √(2 × 2) × ( 17 × 17) × (3 × 3) × 4

A = 2 × 17 × 3 × 2

A = 34 × 6

Area of Δ , A = 204 cm²

Therefore area of ∆BCE = ½ × base × altitude  

204 = ½ × Altitude

204 × 2 = 17× Altitude

Altitude = (204 × 2)/17

Altitude = 12 × 2

Altitude =  24 cm

Area of trapezium ABCD = ½ (sum of parallel sides) × altitude  

Area of trapezium ABCD = ½ (DC + AB) × altitude

Area of trapezium ABCD = ½ (60 + 77) × 24

Area of trapezium ABCD = 12 × 137

Area of trapezium ABCD = 1644 cm²

Hence, the  area of trapezium ABCD is 1644 cm².

Similar questions