Math, asked by akashdhulas, 1 year ago

Two parallel sides of trapezium are 85cm and 63cm and it's area 2664cm square find its altitude

Answers

Answered by gaurav2013c
4
Length of paralell sides are 85 cm and 63 cm

Area of trapezium = 2664
=> (a+b) * Height /2 = 2664
=> (85+63) * Height = 2664 * 2
=> 148 *Height = 2664 * 2
=> Height = 18 * 2
=> Height = 36 cm
Answered by pdpooja100
13

Given : Two parallel sides of trapezium as 85 cm and 63 cm and it's Area = 2664 cm² .

~

To find : Altitude (Ket's say x).

\begin{gathered} \\  \\   \qquad{ \rule{280pt}{2pt}} \\  \end{gathered}

~

SolutioN :-

~

\bf{\dag} \;We know area of a trapezium ;

~

\bigstar \: \: \: \boxed{ \sf{ \:  =\dfrac{1}{2} \times  altitude  \times sum \; of \; its \; parallel \; sides \: }}

~

\bf{\maltese} \;Putting values, we get

~

\qquad \qquad\begin{gathered} \\ \\   : \implies \: \sf 2664=\dfrac{1}{2} \times h \times(85+63) \\  \\  \end{gathered}

\qquad \qquad\begin{gathered} \\  : \implies \: \sf 2664=\dfrac{1}{2} \times h \times \bf 148 \\  \\  \end{gathered}

\qquad \qquad\begin{gathered} \\  : \implies \: \sf  h =  \dfrac{2664}{74}\\  \\  \end{gathered}

\qquad \qquad\begin{gathered} \\  : \implies \:    { \underline{ \boxed{\color{blue}{\pmb{\frak{h =  36}}}}}}  \: \bigstar\\  \\  \end{gathered}

~

\therefore \; The altitude of trapezium = 36.

\begin{gathered} \\  \\   \underline{ \rule{300pt}{7pt}} \\  \end{gathered}

Additional Information :-

\begin{gathered} \begin{gathered} \begin{gathered} \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Square} = Side \times Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _{Rectangle} = Lenght \times Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Triangle} = \frac{1}{2} \times Base \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Parallelogram} = Base \times Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Trapezium} = \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _{Rhombus} = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered} \end{gathered} \end{gathered} \end{gathered}

Similar questions