Two parallogram are given to prove their area of PQRS is equal to area of PXYZ.
Answers
Answered by
2
Sol: Let QR and BC intersect at O. Join CQ, QB, BR and RC. ar(//gm PQRS) = ar(//gm PABC) ⇒ ar(//gm PQOC) + ar(//gm CORS) = ar(//gm PQOC ) + ar(//gm QABO) ⇒ ar(//gm CORS) = ar(//gm QABO) ⇒1/2 ar(//gm CORS) = 1/2 ar(//gm QABO) ⇒ ar (ΔCOR) = ar (ΔQOB) ⇒ ar (ΔCOR) + ar (ΔCQO) = ar (ΔQOB) + ar (ΔCQO) ⇒ ar (ΔCQR) = ar (ΔCQB)
ΔCQR and ΔCQB are on the same base CQ and have equal areas.
Therefore, ΔCQR and ΔCQB lie between the same parallels QC and BR. Hence, QC // BR
ΔCQR and ΔCQB are on the same base CQ and have equal areas.
Therefore, ΔCQR and ΔCQB lie between the same parallels QC and BR. Hence, QC // BR
Answered by
0
Let QR and BC intersect at O.
Join CQ, QB, BR and RC.
ar(//gm PQRS) = ar(//gm PABC)
⇒ ar(//gm PQOC) + ar(//gm CORS) = ar(//gm PQOC ) + ar(//gm QABO)
⇒ ar(//gm CORS) = ar(//gm QABO)
⇒1/2 ar(//gm CORS) = 1/2 ar(//gm QABO)
⇒ ar (ΔCOR) = ar (ΔQOB)
⇒ ar (ΔCOR) + ar (ΔCQO) = ar (ΔQOB) + ar (ΔCQO)
⇒ ar (ΔCQR) = ar (ΔCQB)
ΔCQR and ΔCQB are on the same base CQ and have equal areas.
Therefore, ΔCQR and ΔCQB lie between the same parallels QC and BR.
Hence, QC // BR for triangle pqrs and pabc samjh lena mere pas solve kiya hua tha to anm change kar lena
Similar questions
Chemistry,
7 months ago
Hindi,
7 months ago
Political Science,
1 year ago
Environmental Sciences,
1 year ago
Economy,
1 year ago