Science, asked by Subhadeep39202, 4 months ago

Two particles A and B are in motion. Wavelength of A is 4×10^-5 m and mass of B is 25% of mass of A. Velocity of B is 50% of velocity of A. Calculate wavelength of B.

Answers

Answered by Qᴜɪɴɴ
11

Given:

  • Wavelength of A = 4 \times  {10}^{ - 5}
  • Mass of B= 25% of mass of A
  • Velocity of B = 50% of velocity of A

━━━━━━━━━━━━━━━━

Need to find:

  • Wavelength of B=?

━━━━━━━━━━━━━━━━

Solution:

We know,

 \lambda \:  =  \dfrac{h}{mv}

 {\lambda}_{A} =  \dfrac{h}{{m}_{A} \times {v}_{A}}

\bold{\purple{\boxed{4 \times  {10}^{ - 5}  =  \dfrac{h}{{m}_{A} \times {v}_{A}}}}}

━━━━━━━━━━━

Now let's find mass of B,

{m}_{B} = 25 \: {m}_{A}

\purple{\bold{\boxed{{m}_{B} =  \dfrac{25}{100} {m}_{A}}}}

━━━━━━━━━━━

Velocity of B,

{v}_{B} = 50 \: {v}_{A}

\boxed{\purple{\bold{ {v}_{B} =  \dfrac{50}{100} {v}_{A}}}}

━━━━━━━━━━━

Now,

 {\lambda}_{B} =  \dfrac{h}{{m}_{B} \times {v}_{B}}

 =  \dfrac{h}{ \dfrac{25}{100}{m}_{A} \times  \dfrac{50}{100}{v}_{A} }

 =  \dfrac{h}{ \dfrac{{m}_{A}}{4} \times  \dfrac{{v}_{A}}{2}  }

 =  \dfrac{8h}{{m}_{A}  \times {v}_{A}}

 = 8 \times (4 \times  {10}^{ - 5} )

 \red{\bold{\boxed{\boxed{\large{= 32 \times  {10}^{ - 5} m}}}}}

Answered by negigungun123
0

Given:

Wavelength of A = 4 \times {10}^{ - 5}4×10

−5

Mass of B= 25% of mass of A

Velocity of B = 50% of velocity of A

━━━━━━━━━━━━━━━━

Need to find:

Wavelength of B=?

━━━━━━━━━━━━━━━━

Solution:

We know,

\lambda \: = \dfrac{h}{mv}λ=

mv

h

{\lambda}_{A} = \dfrac{h}{{m}_{A} \times {v}_{A}}λ

A

=

m

A

×v

A

h

\bold{\purple{\boxed{4 \times {10}^{ - 5} = \dfrac{h}{{m}_{A} \times {v}_{A}}}}}

4×10

−5

=

m

A

×v

A

h

━━━━━━━━━━━

Now let's find mass of B,

{m}_{B} = 25 \: {m}_{A}m

B

=25m

A

\purple{\bold{\boxed{{m}_{B} = \dfrac{25}{100} {m}_{A}}}}

m

B

=

100

25

m

A

━━━━━━━━━━━

Velocity of B,

{v}_{B} = 50 \: {v}_{A}v

B

=50v

A

\boxed{\purple{\bold{ {v}_{B} = \dfrac{50}{100} {v}_{A}}}}

v

B

=

100

50

v

A

━━━━━━━━━━━

Now,

{\lambda}_{B} = \dfrac{h}{{m}_{B} \times {v}_{B}}λ

B

=

m

B

×v

B

h

= \dfrac{h}{ \dfrac{25}{100}{m}_{A} \times \dfrac{50}{100}{v}_{A} }=

100

25

m

A

×

100

50

v

A

h

= \dfrac{h}{ \dfrac{{m}_{A}}{4} \times \dfrac{{v}_{A}}{2} }=

4

m

A

×

2

v

A

h

= \dfrac{8h}{{m}_{A} \times {v}_{A}}=

m

A

×v

A

8h

= 8 \times (4 \times {10}^{ - 5} )=8×(4×10

−5

)

\red{\bold{\boxed{\boxed{\large{= 32 \times {10}^{ - 5} m}}}}}

=32×10

−5

m

Similar questions