Physics, asked by suhanee8962, 1 year ago

Two particles A and B start moving with velocities 20m/s and 30√2m/s along x-axis and at an angle of 45 degree with x-axis respectively in xy - plane from origin. what is the relative velocity of B w.r.t A ?

Answers

Answered by lidaralbany
69

Answer:

The relative velocity is 31.62 m/s

Explanation:

Given that,

Velocity of particle A v_{A} = 20\ m/s

Velocity of particle B v_{B} = 30\sqrt{2}\ m/s

Angle \theta=45^{0}

The component of particle A along x-axis

V_{A}_{x}=20 m/s

The component of particle A along y-axis

V_{A}_{y}=0 m/s

The component of particle B along x-axis

V_{B}_{x}=30\sqrt{2}cos 45^{0} m/s

V_{B}_{x}=30\ m/s

The component of particle B along y-axis

V_{B}_{y}=30\sqrt{2}sin45^{0} m/s

V_{B}_{y}=30\ m/s

The velocity of AB along x-axis

v_{AB}_{x}=v_{B}_{x}-v_{A}_{x}

v_{AB}_{x}=30-20

v_{AB}_{x}=10\ m/s

The velocity of AB along y-axis

v_{AB}_{y}=v_{B}_{y}-v_{A}_{y}

v_{AB}_{y}=30-0

v_{AB}_{y}=30\ m/s

Now, the relative velocity of B w.r.t A

v_{AB}_{x}= \sqrt{v_{AB}_{x}^{2}+{v_{AB}_{y}^{2}+2\times v_{AB}_{x}\times v_{AB}_{y}\times cos\alpha}

Where, \alph=90^{0}

v_{AB}_{x}= \sqrt{v_{AB}_{x}^{2}+{v_{AB}_{y}^{2}+2\times 0

v_{AB}_{x}= \sqrt{10^{2}+30^{2}}

v_{AB}_{x}= 31.62\ m/s

Hence, The relative velocity is 31.62 m/s

Answered by mindfulmaisel
32

According to the given data, Velocity of B in x – direction at angle of 45 gives the component as

V_{ b }=30\sqrt { 2 } \times cos45

\Rightarrow v_{ b }=30\frac { m }{ s }

Same for along y axis be

v_{ b }=30\sqrt { 2 } \times sin45

\Rightarrow v_{ b }=30\frac { m }{ s }

Velocity of A which is along x axis v_{ a }=20\frac { m }{ s } and is zero for y component.

So the V _{ab} along x axis  = v_b - v _a along x – axis =30-20=10\frac { m }{ s }

And for y axis be v_{ ab }=v_{ b }-v_{ a }=30-0=30\frac { m }{ s }

Thereby the relative velocity be

V_{ ab }=\sqrt { { { V }_{ { ab }_{ x } } }^{ 2 }+{ { V }_{ { ab }_{ y } } }^{ 2 }+2\times { V }_{ { ab }_{ x } }\times { V }_{ { ab }_{ y } }cos\alpha }

Where \alpha = 90 \quad degree

\Rightarrow V_{ ab }=\sqrt { { { V }_{ { ab }_{ x } } }^{ 2 }+{ { V }_{ { ab }_{ y } } }^{ 2 }+0 }

\Rightarrow V_{ ab }=\sqrt { { 10 }^{ 2 }+{ 30 }^{ 2 } } =\sqrt { 1000 }

\Rightarrow V_{ ab }=31.625\frac { m }{ s }

Similar questions