Physics, asked by RajThakur825, 1 year ago

Two particles of equal mass m at a and b are connected rigid light rod ab lying table. An impulse j is applied at a in the plane of the table and perpendicular at ab. Then the velocity of the particle at a i

Answers

Answered by aristocles
5

Answer:

Speed of the particle at position A is given as

v_A = \frac{J}{m}

Explanation:

As we know that impulse is applied at particle A

now by impulse momentum equation we can say that total momentum transferred to the center of mass is equal to the impulse given at A

J = (2m)v

v = \frac{J}{2m}

Now by angular momentum equation we have

J(\frac{L}{2}) = I\omega

here we have

I = \frac{mL^2}{4} + \frac{mL^2}{4}

I = \frac{mL^2}{2}

so we have

J(\frac{L}{2}) = \frac{mL^2}{2}\omega

\omega = \frac{J}{mL}

now speed of particle A is given as

v_A = v + \frac{\omega L}{2}

v_A = \frac{J}{2m} + \frac{J}{2m}

v_A = \frac{J}{m}

#Learn

Topic : Impulse momentum theorem

https://brainly.in/question/6865092

Similar questions