Physics, asked by IAmOZ5601, 10 months ago

Two particles of masses m1 and m2 are connected by a rigid massless rod of length land move freely in a plane. Show that moment of inertia of the system about an axis perpendicular to the plane and passing through the c.m Is nl2 where n=m1*m2/m1+m2

Answers

Answered by shadowsabers03
3

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\line(1,0){50}}\multiput(0,0.1)(25,0){3}{\circle*{1.5}}\put(-6.5,-1){$\sf{m_1}$}\put(52,-1){$\sf{m_2}$}\put(0,-3){\vector(1,0){24.5}}\put(11.5,-7){$\sf{\bar x}$}\put(25.5,-3){\vector(1,0){24.5}}\put(34,-7){$\sf{l-\bar x}$}\put(24.5,3){\sf{l}}\put(23,4){\vector(-1,0){23}}\put(27,4){\vector(1,0){23}}\put(25.8,-2){\tiny\textsf{cm}}\end{picture}

Let the center of mass of the system be at a distance \sf{\bar x} from the particle of mass \sf{m_1,} which is given by,

\longrightarrow\sf{\bar x=\dfrac{m_1(0)+m_2(l)}{m_1+m_2}}

\longrightarrow\sf{\bar x=\dfrac{m_2l}{m_1+m_2}\quad\quad\dots(1)}

The moment of inertia of the system, about an axis perpendicular to plane of rod and passing through center of mass will be,

\longrightarrow\sf{I=m_1(\bar x)^2+m_2(l-\bar x)^2}

From (1),

\longrightarrow\sf{I=m_1\left(\dfrac{m_2l}{m_1+m_2}\right)^2+m_2\left(l-\dfrac{m_2l}{m_1+m_2}\right)^2}

\longrightarrow\sf{I=m_1\left(\dfrac{m_2l}{m_1+m_2}\right)^2+m_2\left(\dfrac{(m_1+m_2)l-m_2l}{m_1+m_2}\right)^2}

\longrightarrow\sf{I=m_1\left(\dfrac{m_2l}{m_1+m_2}\right)^2+m_2\left(\dfrac{m_1l+m_2l-m_2l}{m_1+m_2}\right)^2}

\longrightarrow\sf{I=m_1\left(\dfrac{m_2l}{m_1+m_2}\right)^2+m_2\left(\dfrac{m_1l}{m_1+m_2}\right)^2}

\longrightarrow\sf{I=\dfrac{m_1(m_2l)^2}{(m_1+m_2)^2}+\dfrac{m_2(m_1l)^2}{(m_1+m_2)^2}}

\longrightarrow\sf{I=\dfrac{m_1(m_2)^2l^2+m_2(m_1)^2l^2}{(m_1+m_2)^2}}

\longrightarrow\sf{I=\dfrac{m_1m_2l^2(m_1+m_2)}{(m_1+m_2)^2}}

\longrightarrow\underline{\underline{\sf{I=\dfrac{m_1m_2l^2}{m_1+m_2}}}}

Taking \sf{\dfrac{m_1m_2}{m_1+m_2}=n,}

\longrightarrow\underline{\underline{\sf{I=nl^2}}}

Hence Proved!

Similar questions