Math, asked by Agnibesh8904, 1 day ago

Two pillars of equal heights stand on either side of a road which is 150 m wide. At a point on the road between the pillars, the angle of elevation of the tops of the pillars are 600 and 300 . Find the height of each pillar.

Answers

Answered by mathdude500
16

Appropriate Question :-

Two pillars of equal heights stand on either side of a road which is 150 m wide. At a point on the road between the pillars, the angle of elevation of the tops of the pillars are 60° and 30° . Find the height of each pillar.

\large\underline{\sf{Solution-}}

Let assume that AB and CD are two pillars of height 'h' on the either side of a road which is 150 m wide.

Let P be the point on the road at a distance of 'x' m from point B such that the angle of elevation of the top of the pillars are 60° and 30°

Now, In right triangle ABP

\rm \: tan60\degree  \:  =  \:  \frac{AB}{BP}  \\

\rm \:  \sqrt{3} = \dfrac{h}{x}  \\

\rm\implies \:\boxed{ \rm{ \:h \:  =  \:  \sqrt{3}  \: x \:   \: }}\cdots \: (1) \\

Now, In right triangle CDP

\rm \: tan30\degree  \:  =  \:  \frac{CD}{DP}  \\

\rm \: \dfrac{1}{ \sqrt{3} }  = \dfrac{h}{150 - x}  \\

\rm \: \dfrac{1}{ \sqrt{3} }  = \dfrac{ \sqrt{3} x}{150 - x}  \\

\rm \: 3x = 150 - x \\

\rm \: 3x + x = 150 \\

\rm \: 4x = 150 \\

\rm\implies \:x = 37.5 \: m \\

On substituting the value of x in equation (1), we get

\rm \: h = 37.5 \sqrt{3}  \\

\rm \: h = 37.5  \times 1.732  \\

\rm\implies \:h \:  =  \: 64.95 \: m \\

\rule{190pt}{2pt}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Answered by maheshtalpada412
8

Step-by-step explanation:

Width of the road =150 m

Angle of the first pillars =60°

Angle of the first pillars =30°

Let AB and CD be two pillars.

Height of pillars =h meter

Observation point on the road is P.

In triangle PAB,

 \\ \rm \tan 60^{\circ}=\frac{ AB }{ AP }

\[ \begin{array}{l} \displaystyle \rm \Rightarrow \sqrt{3}=\frac{h}{x} \\ \\  \displaystyle \rm\Rightarrow \sqrt{3} x=h \end{array} \]

In triangle PCD

\[ \begin{array}{l} \displaystyle \rm\tan 30^{\circ}=\frac{ CD }{ CP } \\ \\ \displaystyle \rm \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{150-x} \\ \\ \displaystyle \rm\Rightarrow h \sqrt{3}=150-x \ldots .(2) \end{array} \]

Put the value of h from equation (1) in equation (2),

 \pmb{\[ \begin{array}{l} \displaystyle \rm \Rightarrow x \sqrt{3} \times \sqrt{3}=150-x \\ \\ \displaystyle \rm\Rightarrow 3 x=150-x \\ \\\displaystyle \rm \Rightarrow x=37.5 \end{array} \]}

Put this value in equation (1),

 \pmb{\[ \begin{array}{l}\displaystyle \rm \Rightarrow \sqrt{3} \times 37.5=h \\ \\ \displaystyle \rm\Rightarrow h=64.95 \end{array} \]}

Thus the required point is at the distance of 37.5 m from the first pillar. The height of the pillars is 64.95 m .

Attachments:
Similar questions