Math, asked by Wood116, 1 year ago

Two pipes a and b can fill a tank in 20 and 30 minutes respectively if both the pipes are used together then how long will it take to fill the tab

Answers

Answered by TooFree
35

 \textbf {Hey there, here is the solution.}

.............................................................................................

STEP 1: Find the rate:

Pipe A can fill the tank in 20 mins

Rate = 1/20 tank/min

Pipe B can fill the tank in 30 mins

Rate = 1/30 tank/min

........................................................................................................................

STEP 2: Find the rate if both work together:

If Pipe A and Pipe B are used together,

I min = 1/20 + 1/30 = 1/12

Rate = 1/12 tank/min

.........................................................................................................................

STEP 3: Find the number of mins needed:

1/12 tank = 1 min

12/12 tank = 1 x 12 = 12 mins

.........................................................................................................................

Answer: It will take 12 minutes to fill up the tank.

.........................................................................................................................

 \textbf {Cheers.}


Siddharthmarayanjha: it will take 12 minutes.
Answered by BloomingBud
50
Pipe \bf{a} can fill the tank in \bf{20} minutes

Pipe \bf{a} = \red{1/20} tank/min

Pipe \bf{b} can fill the tank in \bf{30} minutes

Pipe \bf{b} = \green{1/30} tank/min

Now,
If both pipes will fill the tank together,
So, the rate of both pipes working together :

\red{1/20} + \green{1/30 }

\red{5/60} = \green{1/12 }

= \bf{1/12 }tank/min

Therefore,

1/12 tank = 1 minute

1 tank = 1 × 12 = 12 minutes

Hence,
\bf{It \: \: will\: \: take\: \: 12 \: \:minutes \: \:for\: \: both \: \:the\: \: pipes\: \: working \: \:together \: \:to\: \: fill \: \:the\: \: tank. }
Similar questions