Math, asked by MeeraSanf, 7 months ago

Two pipes running together can fill a cistern in 3 {1/13} min. If one pipe takes 3 min more than the other to fill it, then find the time in which each pipe would fill the cistern.

Answers

Answered by rajendrawange7
0

Answer:

In 3 1/13= 40/13 min the slower pipe filled the cistern= 40/13 × (1/x+3) = 40/13(x+3). Hence, Faster pipe takes 5 min to fill the cistern while slower pipe takes (x+3) = 5+3= 8 min to fill the cistern.

Answered by MrUniqueBoy
2

 \sf \: SOLUTION :  -

Let faster pipe takes x min to fill the cistern.

Then, slower pipe will take ( x + 3 ) min to fill cistern.

 \sf \: Since, \: portion \: of \: the \: cistern \: filled \: by \: the \: faster \: pipe \: in \: 1 \: min =  \frac{1}{x} .

 \therefore \:  \sf \: Portion \: of \: the \: cistern \: filled \: by \: the \: faster \: pipe \: in \: 3 \frac{1}{13} min \\

 \sf = 3 \frac{1}{13}  \times  \frac{1}{x}  =  \frac{40}{13x}  \\

 \sf \: Similarly, \: portion \: of \: the \: cistern \: filled \: by \: slower \: pipe

 \sf \: in \: 3 \frac{1}{13}  \: min =  \frac{40}{13}  \times  \frac{1}{(x + 3)}  =  \frac{40}{13(x + 3)}  \\

According to the question,

 \sf \:  \frac{40}{13x}  +  \frac{40}{13(x + 3)}  = 1 \\

 \implies \:  \sf \:  \frac{40}{13}  \bigg [ \frac{1}{x} +  \frac{1}{x + 3}   \bigg] = 1 \\

 \implies \:  \sf \: 40 \bigg[ \frac{x + 3 + x}{x(x + 3) } \bigg ]  = 13 \implies \: 40(2x + 3) = 13x(x + 3) \\

 \implies \:  \sf \: 80x + 120 = 13 {x}^{2}  + 39x \implies \: 13 {x}^{2}  + 39x - 80x - 120 = 0 \\

 \implies \:  \sf \: 13 {x}^{2}  - 41x - 120 = 0

 \implies \:  \sf \: 13 {x}^{2}  - 65x + 24x - 120 = 0 \:  \:  \:  \:  \:  \:  [by \: factorisation] \\

 \implies \:  \sf \: 13x(x - 5) + 24(x - 5) = 0

 \implies \:  \sf \: (x - 5)(13x + 24) = 0

 \implies \:  \sf \: x - 5 = 0 \: or \: 13x + 24 = 0

 \implies \:  \sf \: x = 5 \: or \: x =  \frac{ - 24}{13}

 \because \:  \sf \: Time \: cannot \: be \: negative.

 \therefore \:  \sf \: x = 5

Hence, faster pipe takes 5 min to fill the cistern while slower pipe takes ( 5 + 3 ) = 8 min to fill the cistern.

Similar questions