Physics, asked by Adityabarakoti5039, 9 months ago

Two planets have radius in the ratio x : y and density in the ratio m : n. The acceleration due to gravity on the surface of the two planets will be in the ratio of

Answers

Answered by DrNykterstein
4

Given :-

\quad Two planets have radius in the ratio x : y and density in ratio m : n.

To Find :-

\quad The ratio of acceleration due to gravity on the surface of the two planets will be?

Solution :-

We know,

\qquad \displaystyle \boxed{ \rm g =  \frac{Gm}{ {r}^{2} } }

From the equation, we know

\rightarrow \qquad \displaystyle \rm g \propto  \frac{1}{ {r}^{2} }  \\  \\ \displaystyle \rm and,  \quad   g \propto M

\\

It is given that the ratio of density of these two planets is m : n

So, Let us find the ratio of masses,

 \Rightarrow  \displaystyle \quad \rm  \frac{Density_{a}}{Density_{b}}  =  \frac{m}{n} \\ \\ \Rightarrow \displaystyle \rm \quad  \frac{ \frac{m_{a}}{v_{a}}}{ \frac{m _{b}}{v_{b}}} = \frac{m}{n}  \\  \\  \Rightarrow \displaystyle \rm \quad  \frac{m_{a} \cdot v_{b}}{m_{b} \cdot v_{a}}  =  \frac{m}{n}  \\  \\  \Rightarrow \displaystyle \rm \quad  \frac{m_{a}}{m_{b}}  =  \frac{m \cdot v_{a}}{n \cdot v_{b}} \quad ...(1)

Now, that we have found the ratio of thier masses, Let us find the ratio of acceleration due to gravity:

 \displaystyle \Rightarrow \quad \rm  \frac{g_{a}}{g_{b}}  =  \frac{ \frac{\not{G}m_{a}}{ {(r _{a})}^{2} } }{ \frac{\not{G}m_{b}}{ {(r_{b})}^{2} } }  \\  \\  \Rightarrow \displaystyle \rm \quad  \frac{g_{a}}{g_{b}}  =  \frac{m_{a} \cdot  {(r_{b})}^{2} }{m _{b} \cdot  {(r_{a})}^{2} }  \\  \\  \Rightarrow \displaystyle \quad \rm  \frac{g _{a}}{g_{b}}  =  \frac{m\cdot  v_{a}}{n \cdot v_{b}} \times   \frac{ {y}^{2} }{ {x}^{2} }  \\  \\ \Rightarrow \displaystyle \quad \rm \frac{g _{a}}{g_{b}} =  \frac{ {y}^{2}mv_{a}}{ {x}^{2}nv_{b}} \\ \\ \Rightarrow \displaystyle \quad \rm \frac{g_{a}}{g_{b}} = \frac{y^{2} \cdot m \cdot \not{4}\not{\pi}(r_{a})^{3}}{x^{2} \cdot n \cdot \not{4}\not{\pi}(r_{b})^{3}} \\ \\\Rightarrow \displaystyle \quad \rm \frac{g_{a}}{g_{b}} = \frac{x^{\not{3}^{1}}y^{\not{2}}m}{y^{\not{3}_{1}}x^{\not{2}}n} \\ \\ \Rightarrow \displaystyle \quad \rm \frac{g_{a}}{g_{b}} = \frac{xm}{yn}\\

Some Information :-

\quadVolume of Sphere = 4πr³

Where, r = radius of sphere

\quad Mass = Density × Volume

Similar questions