Physics, asked by sanikakurjekar07, 10 months ago

Two point charges + 4q and +q are placed 30 cm

apart. At what point on the line joining them is the

electric field zero ? (from 4q) in cm​

Answers

Answered by amansharma264
3

EXPLANATION.

Two point charge = +4q and +q

Distance = 30 cm

To find where electric field is zero.

According to the question,

 \rm \to \: formula \:  \: of \:  \: coulombs \:  \: law

   \green{ \large{\bold{\rm \to \: \:f \:  =  \frac{k q_{1} q_{2}  }{ {r}^{2} } }}}

The electric field is zero at the point where the

forces exerted by charge +4q and +q on a

test charge Q are equal.

Therefore,

 \rm \to \:  f_{1} \:  =  \:  f_{2}

1) = Force on +q point on a charge.

 \rm \to \:  f_{1} \:  =  \frac{kqQ}{ x {}^{2} }

2) = Force on +4q point on a charge.

 \rm \to \:  f_{2} \:  =  \frac{4kqQ}{(l \:  -  \: x \: ) {}^{2} }

=> Fnet = F¹ = F²

 \rm \:  \to \:  \frac{kqQ}{ {x}^{2} } =  \frac{4kqQ}{(l \:  -  \: x \: ) {}^{2} }

 \rm \to \:  \frac{1}{x {}^{2} }  =  \frac{4}{(l \:  -  \: x \: ) {}^{2} }

 \rm \to \:  \frac{(l \:  -  \: x \: ) {}^{2} }{ {x}^{2} }  = 4

 \rm \to \:  \frac{(l \:  -  \: x \: )}{x}  =  \sqrt{4}

 \rm \to \:  \frac{(l \:  -  \: x \: )}{x} =  \pm \: 2

Case = 1.

 \rm \to \:  \frac{( \: l \:  -  \: x)}{x}  = 2

 \rm \to \: l \:  -  \: x \:  = 2x

 \rm \to \: l \:  = 3x

=> L = Length = 30 cm [ Given ]

put the value of L = 30 cm

 \rm \to \:   30 = \: 3x

 \rm \to \: x \:  = 10 \: cm

Case = 2.

 \rm \to \:  \frac{(l \:  -  \: x \: )}{x}  =  - 2

 \rm \to \:  l \:   -  x \:  =  - 2x

 \rm \to \: l \:  =  - x

 \rm \to \: x \:  \ne \:  - 10

Therefore,

=> X = 10 cm.

=> ( L - x) = 30 - 10 = 20 cm

=> x = 10 cm

Attachments:
Similar questions