Physics, asked by jahid5306, 11 months ago

Two point charges 8 by 3 Cand 2 by 3 C are kept in a vacuum. What is the distance between them if they repel each other with a force of 1.6 ×10*12 N ?

Answers

Answered by Anonymous
15

Answer:

\displaystyle \text{r = 0.1 m}

Explanation:

\displaystyle \text{Given}\\\\\\\displaystyle \text{$q_1= \dfrac{8}{3}$ C and q_2=\dfrac{2}{3} $ C }\\\\\\\displaystyle \text{Force = $1.6\times10^{12} $ N}\\\\\\\displaystyle \text{We know formula for Force}\\\\\\\displaystyle \text{$F=\dfrac{1}{4\pi\epsilon}\dfrac{q_1q_2}{r^2} $}\\\\\\\displaystyle \text{We know value of : }\\\\\\\displaystyle \text{$F=\dfrac{1}{4\pi\epsilon}=9.0\times10^{9}$}\\\\\\\displaystyle \text{Now putting given values}

\displaystyle{1.6\times10^{12}=9.0\times10^{9}\times\dfrac{8/3\times2/3}{r^2} }\\\\\\\displaystyle{1.6\times10^{3}=9.0\times\dfrac{16/9}{r^2}}\\\\\\\displaystyle{r^2=9.0\times\dfrac{16/9}{1.6\times10^3}}\\\\\\\displaystyle{r^2=1\times10^{-2}}\\\\\\\displaystyle{r=10^{-1}}\\\\\\\displaystyle \text{r = 0.1 m}

\displaystyle \text{Hence we get answer .}

Answered by BrainlyConqueror0901
9

Answer:

{\bold{\therefore r=0.1\:m}}

\huge{\bold{\underline{\underline{SOLUTION-}}}}

• In the given question information given about charges of two point and force is given.

• We have to find distance between the two points.

 \underline \bold{Given : }  \\  \implies  q_{1} =  \frac{8}{3} c \\  \\  \implies  q_{2} =  \frac{2}{3} c \\  \\  \implies F = 1.6 \times  {10}^{12} n \\    \\  \underline \bold{To \: Find : } \\   \implies r = ?

• According to given question :

 \bold {By \: using \: formula : } \\  \implies F=  \frac{1}{4\pi \in}  \frac{q _{1} q_{2} }{ {r}^{2} }  \\  \\  \bold{where, } \\  \implies  \frac{1}{1\pi \in}  = 9.0 \times  {10}^{9}  \\  \\  \bold{putting \: given \: values} \\  \implies  1.6 \times  {10}^{12}  = 9.0 \times  {10}^{9}  \times \frac{ \frac{8}{3} \times  \frac{2}{3}  }{ {r}^{2} }  \\  \\  \implies 1.6 \times  {10}^{12}  = 9.0 \times  {10}^{9}  \times   \frac{ \frac{16}{9} }{ {r}^{2} }  \\  \\  \implies  \frac{1.6 \times  {10}^{12} }{9.0 \times  {10}^{9} }  =  \frac{16}{9( {r})^{2} }  \\  \\  \implies  \frac{16 \times  {10}^{11 - 9} }{9.0}  =  \frac{16}{9( {r})^{2} }  \\  \\  \implies  \frac{ \cancel{16 }\times  {10}^{2} \times  \cancel9 }{  \cancel{9} \times  \cancel{16}}  =  \frac{1}{ {r}^{2} }  \\  \\  \implies  {r}^{\cancel2}  =  \frac{1}{ {10}^{\cancel2} }  \\  \\  \implies r =  \frac{1}{10}  \\  \\   \bold{\implies r = 0.1 \: m}

Similar questions