Math, asked by beastywolf9, 8 months ago

Two points A (-2, 9) and B (4, 8) lie on a line l. 1,Find the slope of the line l. 2,Find the coordinates of the midpoint of the points A and B 3,Find the distance between points A and B.

Answers

Answered by NaveedAbbas
8

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
0

 Given \: two \:points \: A(-2,9) \:and \: B(4,8)

 lie \:on \:a \:line .

 Let \:(x_{1} , y_{1}) = A(-2,9) \:and

 (x_{2} , y_{2}) = B(4,8)

1.) \red{Slope \: of \:the \:line (AB) }

 = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}

 = \frac{ 8 - 9}{4-(-2)}

 = \frac{-9}{4+2}

 = \frac{-9}{6}

\green{ = \frac{-3}{2}}

 2)\red{Mid \:point \:of \: joining \: points \: A \:and \:B}

 = \Big( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\Big)

 = \Big( \frac{-2+4}{2}, \frac{9+8}{2}\Big)

 = \Big( \frac{2}{2} , \frac{17}{2}\Big)

 \green {= \Big( 1 , \frac{17}{2}\Big)}

 3.) \red{ Distance \:of \: AB}

 = \sqrt{ (x_{2} - x_{1})^{2} + ( y_{2} - y_{1})^{2} )}

 = \sqrt{ [ 4-(-2)]^{2} + ( 8-9)^{2} }

 = \sqrt{ ( 4+2)^{2} + (-1)^{2} }

 = \sqrt{ 6^{2} + 1 }

 = \sqrt{36 + 1 }

 \green {= \sqrt{37}}

••••♪

Similar questions