Math, asked by Anonymous, 6 months ago

Two poles of equal height stand vertically opposite to each other on either side of the road, which is 100 m wide. From a point on the road between the poles, the angle of elevation of the tops of the poles are 30 degree and 60 degree . Find the heights of the poles. Also find the distance of the point from the feets to the poles.​

Answers

Answered by BʀᴀɪɴʟʏAʙCᴅ
3

\huge{\orange{\boxed{\fcolorbox{lime}{aqua}{\pink{SOLUTION}}}}} \\

In ∆AOC,

\bf{\tan{60°}\:=\:\dfrac{h}{x}\:} \\

\therefore\:\bf{x\:=\:\dfrac{h}{\sqrt{3}}\:} \\

In ∆BOD,

\bf{\tan{30°}\:=\:\dfrac{h}{100\:-\:x}\:} \\

\implies\:\bf{100\:-\:x\:=\:{h}{\sqrt{3}}\:} \\

\implies\:\bf{100\:-\:{h}{\sqrt{3}}\:=\:x\:} \\

\implies\:\bf{100\:-\:{h}{\sqrt{3}}\:=\:\dfrac{h}{\sqrt{3}}\:} \\

\implies\:\bf{h\:=\:25\sqrt{3}\:m\:} \\

\therefore\:\bf{x\:=\:\dfrac{h}{\sqrt{3}}\:=\:\dfrac{25\sqrt{3}}{\sqrt{3}}} \\

\therefore\:\bf{x\:=\:25\:m\:} \\

  • OC = 25 m

→ OD = 100 - 25

OD = 75 m

\mathbb{\blue{Hope\: it's\: help\:U} \\

Similar questions