Math, asked by harry161, 1 year ago

Two poles of equal heights are standing opposite each other on either side of the roads, wch is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.

Answers

Answered by JaGo19
0
here is your answer. mark as brainliest if it helped you. 
Attachments:
Answered by SmãrtyMohït
14
Here is your solution

Given:-

AB and CD be the two poles of equal height.

Their heights be H m.

BC be the 80 m wide road.

P be any point on the road.

Let ,
CP be x m,

BP = (80 – x) . 
Also, ∠APB = 60° and ∠DPC = 30°

In right angled triangle DCP, 

Tan 30° = CD/CP 
⇒ h/x = 1/√3 
⇒ h = x/√3 ---------- (1) 

In right angled triangle ABP

Tan 60° = AB/AP 
⇒ h/(80 – x) = √3
⇒ h = √3(80 – x) 
⇒ x/√3 = √3(80 – x) 
⇒ x = 3(80 – x) 
⇒ x = 240 – 3x
⇒ x + 3x = 240
⇒ 4x = 240
⇒ x = 60 

Height of the pole, h = x/√3 = 60/√3 = 20√3. 

Thus, position of the point P is 60 m from C and height of each pole is 20√3 m.

hope it helps you
Attachments:
Similar questions