Math, asked by riteshsharma3872, 7 hours ago

. Two poles of equal heights are standing opposite each other on either side of the rol which is 80 m wide. From a point between them on the road, the angles of elevations 1) the top of the poles are 60° and 30°, respectively. Find the height of the poles andal distances of the point from the poles. ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let AB and CD be two poles of equal height 'h' metres such that AC = 80 m.

Let P be any point on the road AC such that AP = x metres

So, BP = 80 - x metres.

Further given that,

  • ∠APB = 60°

  • ∠BPC = 30°

Now, In right triangle APB

\rm :\longmapsto\:tan60 \degree \:  =  \: \dfrac{AB}{PB}

\rm :\longmapsto\: \sqrt{3} = \dfrac{h}{x}

\rm \implies\:\boxed{\tt{ \:  h \:  =  \:  \sqrt{3}x \: }} -  -  - (1)

Now, In right triangle CPD

\rm :\longmapsto\:tan30 \degree \:  =  \: \dfrac{CD}{CP}

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3} }  = \dfrac{h}{80 - x}

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3} }  = \dfrac{ \sqrt{3} x}{80 - x}

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (1) \bigg\}}

\rm :\longmapsto\:3x = 80 - x

\rm :\longmapsto\:3x + x = 80

\rm :\longmapsto\:4x= 80

\rm \implies\:\boxed{\tt{ \:  x = 20 \: m \: }} -  -  - (2)

On substituting the value of x in equation (1), we get

\rm \implies\:\boxed{\tt{ \:  h = 20 \sqrt{3} = 20 \times 1.732 = 34.64  \: m \: }}

Hence,

  • Height of poles, AB and CD = 34.64 m

  • Distance of pole AB from P = 20 m

  • Distance of pole CD from P = 60 m

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions