Math, asked by arjun37701, 11 months ago

Two poles stand at either side of the road
Height of the poles are in the ratio 1:2
The road is 90 feet wide
The angle of elevation of both the poles from a point in between the road is 60degree find the height of the poles

Answers

Answered by mysticd
0

 Let \: AB \:and \:CD \:are \:two \:poles .

 AB : CD = 1 : 2 \: ( given )

 Let \: AB = x \:ft , \: CD = 2x \:ft

 "O" \:is \:the \:point \:from \:where \:the \\elevation \:angles \:are \:measured .

 Distance \: between \:two \:poles (BD) = 90 \:ft

 Let \: BO = y \:ft , \\and \: OD = (90 - y) \:ft

 In \: \triangle AOB , we \:have ,\\tan \: \angle {AOB} = \frac{AB}{BO}

 \implies tan 60 \degree = \frac{x}{y}

 \implies \sqrt{3} = \frac{x}{y}

 \implies y = \frac{x}{\sqrt{3}} \: ---(1)

 In \: \triangle COD , we \:have ,\\tan \: \angle {COD} = \frac{CD}{OD}

 \implies tan 60 \degree = \frac{2x}{(90-y)}

 \implies \sqrt{3} = \frac{2x}{(90-y)}

 \implies 90 - y  = \frac{2x}{\sqrt{3}}

 \implies y = 90 - \frac{2x}{\sqrt{3}}\: ---(2)

/* From (1) and (2) */

 \frac{x}{\sqrt{3}} = 90 - \frac{2x}{\sqrt{3}}

 \implies \frac{x}{\sqrt{3}} + \frac{2x}{\sqrt{3}} = 90

 \implies \frac{3x}{\sqrt{3}} =90

 \implies x = 90 \times \frac{\sqrt{3}}{3} \\= 30\sqrt{3}

 Now, Height \:of \:the \:pole (AB) = 30\sqrt{3} \:ft

 Now, Height \:of \:the \:pole (CD) \\= 2x\\=  2 \times 30\sqrt{3} \\= 60\sqrt{3} \:ft

•••♪

Attachments:
Similar questions