Physics, asked by vickyzade3441, 9 months ago

Two positive charge 4×10^-6C and 6×10^-6c are placed at the corners Aand B of an equilateral triangle of side 3m .Find the electric intensity of the corner C

Answers

Answered by saounksh
11

ᴀɴsᴡᴇʀ

  •  \red{\boxed{E_C= 2000\sqrt{13 + 6\sqrt{3}}\:N/C}}

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

ɢɪᴠᴇɴ

  • Two positive charge are placed at corners A and B of equilateral triangle ABC.

  •  Q_A = 4\times 10^{-6}C,

  •  Q_B = 6\times 10^{-6}C.

  • Side length of equilateral triangle, a = 3 m.

ᴛᴏ ғɪɴᴅ

  • Electric Field Intensity at C.

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

Electric Field Intensity at C due to charge particle at A is given by

\to \vec{E}_{CA} = \frac{KQ_A}{a^2}\hat{AC}

Electric Field Intensity at C due to charge particle at B is given by

\to \vec{E}_{BA} = \frac{KQ_B}{a^2}\hat{BC}

Since ABC is equilateral, angle between  \hat{AC} and  \hat{BC} i. e.  \theta = 60^o . Therefore,

\:\:\:\:\:\:\: \vec{E}_C = \vec{E}_{CA} + \vec{E}_{BA}

\implies |\vec{E}_C|= |\vec{E}_{CA} + \vec{E}_{BA}|

\implies E_C=

 \sqrt{({E_{CA})}^2 + {(E_{BA})}^2 + 2E_{CA}.E_{BA}cos(\theta)}

 \sqrt{{(\frac{KQ_A}{a^2})}^2 + {(\frac{KQ_B}{a^2})}^2 + 2(\frac{KQ_A}{a^2}).(\frac{KQ_B}{a^2})cos(30^o)}

  \frac{K}{a^2}\sqrt{{(Q_A)}^2 + {(Q_B)}^2 + 2(Q_A).(Q_B)cos(30^o)}

 \frac{K}{a^2}\sqrt{{(4\times 10^{-6})}^2 + {(6\times 10^{-6})}^2 + 2(4\times 10^{-6}).(6\times 10^{-6})\frac{\sqrt{3}}{2}}

 \frac{10^{-6}K}{a^2}\sqrt{4^2 + 6^2 + 4\times 6\sqrt{3}}

 \frac{10^{-6}(9\times 10^9)}{3^2}\sqrt{52+ 24\sqrt{3}}

 \frac{9\times 10^3}{9}\sqrt{4(13+ 6\sqrt{3})}

\implies E_C= 2\times 10^3\sqrt{13 + 6\sqrt{3}}

\implies E_C= 2000\sqrt{13 + 6\sqrt{3}}\:N/C

Similar questions