two positive numbers differ by 5 and sum of their square is 433 find the number
Answers
I am not sure about this answer.
Hope it will help you.
Answer:
The required numbers are 12 & 17.
Step-by-step-explanation:
Let the greater number be x.
And the smaller number be y.
From the first condition,
x - y = 5
⇒ x = 5 + y
⇒ x = y + 5 - - - ( 1 )
From the second condition,
x² + y² = 433
⇒ ( y + 5 )² + y² = 433 - - - [ From ( 1 ) ]
⇒ y² + 2 * y * 5 + 5² + y² = 433
⇒ y² + y² + 10y + 25 = 433
⇒ 2y² + 10y + 25 = 433
⇒ 2y² + 10y + 25 - 433 = 0
⇒ 2y² + 10y - 408 = 0
⇒ 2y² + 34y - 24y - 408 = 0
⇒ 2y ( y + 17 ) - 24 ( y + 17 ) = 0
⇒ ( y + 17 ) ( 2y - 24 ) = 0
⇒ ( y + 17 ) = 0 OR ( 2y - 24 ) = 0
⇒ y + 17 = 0 OR 2y - 24 = 0
⇒ y = - 17 OR 2y = 24
⇒ y = - 17 OR y = 24 ÷ 2
⇒ y = - 17 OR y = 12
But the given numbers are positive.
∴ y = - 17 is unacceptable.
∴ y = 12
∴ Smaller number = 12
By substituting y = 12 in equation ( 1 ), we get,
x = y + 5 - - - ( 1 )
⇒ x = 12 + 5
⇒ x = 17
∴ Greater number = 17
∴ The required numbers are 12 & 17.