Physics, asked by sho090078601, 7 months ago

Two positive point charges of 15 x 10-10 C and 13x10-10C are placed
12cm apart. Find the work done in bringing the two charges 4 cm closer.
13
8​

Answers

Answered by nirman95
5

Given:

Two positive point charges of 15 x 10-10 C and 13x10-10C are placed 12cm apart.

To find:

Work done in bringing the two charges 4cm closer ?

Calculation:

The work done for transfer of charges can be calculated from the difference of potential energy at the two distances.

 \sf \therefore \: W =  PE2 -  PE1

 \sf \implies\: W =   \dfrac{(q1)(q2)}{4\pi  \epsilon_{0}(r2)} -   \dfrac{(q1)(q2)}{4\pi  \epsilon_{0}(r1)}

 \sf \implies\: W =   \dfrac{(q1)(q2)}{4\pi  \epsilon_{0}}  \bigg \{ \dfrac{1}{r2}  -  \dfrac{1}{r1}  \bigg \}

Putting the values in SI unit:

 \sf \implies\: W =   \dfrac{(15 \times  {10}^{ - 10} )(13 \times  {10}^{ - 10} )}{4\pi  \epsilon_{0}}  \bigg \{ \dfrac{1}{ (\frac{8}{100} )}  -  \dfrac{1}{ (\frac{12}{100} )}  \bigg \}

 \sf \implies\: W =   \dfrac{195 \times  {10}^{ - 20} }{4\pi  \epsilon_{0}}  \bigg \{ \dfrac{100}{8}  -  \dfrac{100}{12}  \bigg \}

 \sf \implies\: W =   \dfrac{195 \times  {10}^{ - 20} }{4\pi  \epsilon_{0}}  \bigg \{ \dfrac{300 - 200}{24}   \bigg \}

 \sf \implies\: W =   \dfrac{195 \times  {10}^{ - 20} }{4\pi  \epsilon_{0}}  \bigg \{ \dfrac{100}{24}   \bigg \}

 \sf \implies\: W =   195 \times  {10}^{ - 20}  \times  \bigg \{ \dfrac{100}{24}   \bigg \} \times 9 \times  {10}^{9}

 \sf \implies\: W =   195 \times  {10}^{ - 20}  \times  \bigg \{ \dfrac{1}{24}   \bigg \} \times 9 \times  {10}^{11}

 \sf \implies\: W = 73.12 \times  {10}^{ - 9}  \: joule

So, final answer is:

 \boxed{ \bold{\: W = 73.12 \times  {10}^{ - 9}  \: joule}}

Similar questions