Chemistry, asked by riteshkumar84, 6 months ago

Two resistance when connected in parallel give
resultant value of 2ohm when connected in series the
value becomes 9ohm calculate the value of each

Answers

Answered by RISH4BH
88

Given :-

  • Two resistances when connected in parallel give resultant of 2Ω .
  • When they are connected in series it gives resistance of 9Ω .

To Find :-

  • The value of each resistance .

Answer :-

Let us take :

  • \sf \blue{First\: resistance\:be\:x.}
  • \sf \blue{Second\: resistance\:be\:y.}

\tt Now\:we\:know\:when\::-

\sf{\pink{\blue{\mapsto}When\: resistances\:are\: connected\:in\: series:}}

\boxed{\red{\bf{\pink{\dag}\:R_{net}=R_1+R_2+R_3+......+R_n}}}

\bf\qquad\qquad\qquad And,

\sf{\pink{\blue{\mapsto}When\: resistances\:are\: connected\:in\: parallel:}}

\boxed{\red{\bf{\pink{\dag}\:\dfrac{1}{R_{net}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+......+\dfrac{1}{R_n}}}}

\tt Let's\:use\:these\:one\:by\:one,

\tt{\orange{\mapsto}\green{Case\:1:In\: series}}

\tt:\implies R_{net}=R_1+R_2+R_3+......+R_n

\tt:\implies R_{net}=x+y

\tt:\implies 9\Omega=x+y

\underline{\boxed{\red{\tt\longmapsto x+y=9\Omega}}}

___________________________________

\tt{\orange{\mapsto}\green{Case\:2:In\: series}}

\tt:\implies \dfrac{1}{R_{net}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+......+\dfrac{1}{R_n}

\tt:\implies \dfrac{1}{R_{net}}=\dfrac{1}{x}+\dfrac{1}{y}

\tt:\implies \dfrac{1}{R_{net}}=\dfrac{x+y}{xy}

\tt:\implies \dfrac{1}{2\Omega} =\dfrac{x+y}{xy}

\tt:\implies 2(x+y)=xy

\tt:\implies 2(x+9-x)=x(9-x)

\tt:\implies 2\times9=9x-x^2

\tt:\implies 18=9x-x^2

\tt:\implies x^2-9x+18=0

\tt:\implies x^2-3x-6x+18=0

\tt:\implies x(x-3)-6(x-3)=0

\tt:\implies(x-6)(x-3)=0

\underline{\boxed{\red{\tt\longmapsto x\qquad=\qquad 3\Omega,6\Omega}}}

\boxed{\green{\bf\pink{\dag}\:Hence\:two\: resistances\:are\:6\Omega\&\:3\Omega.}}

Answered by anurag2147
1

let the each resistance be R¹ and R²

in parallel

1/R¹+1/R² = R¹+R²/R¹R² =2( given )...........2

in series

R¹+R² = 9 (given )...........1

put eq1 in eq2

9/R¹R² = 2

R¹R² = 2/9

formula (a+b)²-(a-b)² = 4ab

(R¹+R²) ² + (R¹-R²)² = 4R¹R²

9² + (R¹-R²)² = 8/9

(R¹-R²)² = 8/9 - 81 = 8 - 729= 721

(R¹-R²) = 26.8

2R¹ = 35.8

R¹ = 35.8/2 = 17.9

put R¹ in any eq

R² = 8.9

hence the R¹ = 17.9 and R² = 8.9

Similar questions