Physics, asked by sanju5820, 10 months ago

Two resistances when connected in parallel give a equivalent resistance of 2ohms, when
same resistances were connected in series the resultant resistance became 9ohms.calculate
value of each resistance.​

Answers

Answered by ShivamKashyap08
3

Answer:

  • The Resistances are 6 ohms & 3 ohms Respectively.

Given:

  1. Two resistances when connected in parallel give a equivalent resistance of 2 ohms.
  2. Resistances were connected in series the resultant resistance became 9 ohms.

Explanation:

\rule{300}{1.5}

From First Statement:-

Two resistances when connected in parallel give a equivalent resistance of 2 ohms.

We Know,

\large\bigstar \: {\boxed{\tt \dfrac{1}{R} = \dfrac{1}{R_1} + \dfrac{1}{R_2}}}

\bold{Here}\begin{cases}\text{R Denotes Effective Resistance} \\ \sf{R_1} \: \text{Denotes Resistance} \\ \sf{R_1} \: \text{Denotes Resistance}\end{cases}

Now,

\large{\boxed{\tt \dfrac{1}{R} = \dfrac{1}{R_1} + \dfrac{1}{R_2}}}

\large{\tt \longmapsto \dfrac{1}{R} = \dfrac{1}{R_1} + \dfrac{1}{R_2}}

\large{\tt \longmapsto \dfrac{1}{2} = \dfrac{1}{R_1} + \dfrac{1}{R_2} \: ----(1)}

\rule{300}{1.5}

\rule{300}{1.5}

From Second Statement:-

Resistances were connected in series the resultant resistance became 9ohms.

We Know,

\large\bigstar \: {\boxed{\tt R = R_1 + R_2}}

\bold{Here}\begin{cases}\text{R Denotes Effective Resistance} \\ \sf{R_1} \: \text{Denotes Resistance} \\ \sf{R_1} \: \text{Denotes Resistance}\end{cases}

Now,

\large{\boxed{\tt R = R_1 + R_2}}

\large{\tt \longmapsto R = R_1 + R_2}

\large{\tt \longmapsto 9 = R_1 + R_2}

Now

\large{\tt \longmapsto R_1 = 9 - R_2}

Substituting the Above equation in Equation (1).

\large{\tt \longmapsto \dfrac{1}{2} = \dfrac{1}{R_1} + \dfrac{1}{R_2} \: ----(1)}

\large{\tt \longmapsto \dfrac{1}{2} = \dfrac{1}{ 9 - R_2} + \dfrac{1}{R_2}}

\large{\tt \longmapsto \dfrac{1}{2} = \dfrac{R_2 + (9 - R_2)}{( 9 - R_2) \times R_2}}

\large{\tt \longmapsto \dfrac{1}{2} = \dfrac{\cancel{R_2} + 9 - \cancel{R_2}}{( 9 - R_2) \times R_2}}

\large{\tt \longmapsto \dfrac{1}{2} = \dfrac{9}{( 9 - R_2) \times R_2}}

\large{\tt \longmapsto \dfrac{1}{2} = \dfrac{9}{( 9R_2 - R_2^2)}}

Cross- Multiplying,

\large{\tt \longmapsto 9R_2 - R_2^2 = 9 \times 2}

\large{\tt \longmapsto 9R_2 - R_2^2 = 18}

Multiplying with " - " on Both sides, Results in.

\large{\tt \longmapsto - 9R_2 + R_2^2 = - 18}

\large{\tt \longmapsto R_2^2 - 9 R_2 + 18 = 0}

By Splitting the middle term.

\large{\tt \longmapsto R_2^2 - 6R_2 - 3R_2 + 18 = 0}

\large{\tt \longmapsto R_2(R_2 - 6) - 3(R_2 - 6) = 0}

\large{\tt \longmapsto (R_2 - 6) (R_2 - 3) = 0}

\large\longmapsto {\underline{\boxed{\tt R_2 = 6\:  (or) \; 3 \:  \Omega}}}

Now,

When

R₂ = 6 Ω then R₂ = 3 Ω

R = 3 Ω then R = 6 Ω.

\rule{300}{1.5}

Similar questions