Physics, asked by simran3211, 9 months ago

Two resistors of resistances R(1) = 100  \: \pm \: 3 ohm and R(2) = 200  \: \pm \: 4 ohm are connected (a) in series,(b) in Parrellel.Find the equivalent resistance of the (a) series combination, (b) parallel combination.Use for (a) the relation R= R(1)+R(2) . and for (b)

 \frac{1}{ r_{1} }   +  \frac{1}{ r_{2} }  \\
and
 \frac{ \triangle \: R }{ {R }^{2}  }  =  \frac{ \triangle \: R_{1}}{ {R _{1} {}^{2} } }   +  \frac{ \triangle R_{2}}{ R_{2}  {}^{2} }

Answers

Answered by CrEEpycAmp
15

\underline{\huge{Answer:-}}

Explanation:

 \: \large\bold{(a) \: \:The \: equivalent \: resistance\: of \: series\: combination.} \:

  \large \mathcal{R = R _{1} +  R_{2} = (100 \pm3) \: ohm \:  + (200 \pm4) \: ohm } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \mathcal{ =300 \pm7 \: ohm. }

 \: \large\bold{(b) \: \: The \: equivalent \: resistance\: of \: parallel \: combination.} \:

 \large \mathcal{ {R}^{'} =   \frac{ R_{1}  R_{2} }{ R_{1} + R _{2}   } =  \frac{200}{3}  = 66.7 \: ohm  }

 \large \bold{Then , \:  from}  \:  \: \large \mathcal{ \frac{1}{R'} =  \frac{1}{ R_{1}  } +  \frac{1}{ R_{2} }   }

 \large \bold{we \: get, }

 \large \mathcal{  \frac{ \triangle \: R'}{ {R'}^{2} }  =  \frac{ \triangle \: R_{1} }{ R_{1} ^{2}  }   +  \frac{ \triangle \: R _{2} }{ R_{2} {}^{2}  }  } \\

 \large \mathcal{ \triangle \: R' = (R' {}^{2}) \frac{ \triangle \: R _{1} }{R _{1} {}^{2}  } + ( {R'}^{2} ) \frac{ \triangle R_{2} }{ R_{2} {}^{2}  }   } \\

 \large \mathcal{( \frac{66.7}{100} ){}^{2}3 + ( \frac{66.7}{200} ) {}^{2}  4 } \\  \\   \:  =  \large \fbox{1.8}

 \large \mathcal{Then , \:  R' \:  = 66.7 \pm1.8 \: ohm}

────────────────────────────

(Here , ∆R is expressed as 1.8 instead of 2 to keep in confirmity with the rules of significant figures.)

────────────────────────────

Answered by Anonymous
0

Answer:

the \: answer \: is \: 1.8

Similar questions