Science, asked by monaaquarious, 10 months ago

Two resistors with resistances 50 and 10 Q are to be connected to a battery of emf 6 V so as to obtain:
(i) minimum current
(ü) maximum current
(a) How will you connect the resistances in each case?
(b) Calculate the strength of the total current in the circuit in the two cases.​

Answers

Answered by amitkumar44481
22

SolutioN :

  • R1 = 50Ω.
  • R2 = 10Ω.

Condition 1.

  • ✎ When we connect 50Ω and 10Ω in Parellel Combination.

 \tt  \dagger \:  \:  \:  \:  \: \dfrac{1}{R_P}= \dfrac{1}{R_1}+ \dfrac{1}{R_2}+... \dfrac{1}{R_n}

 \tt :  \implies \dfrac{1}{R_P}= \dfrac{1}{50}+ \dfrac{1}{10}

 \tt :  \implies \dfrac{1}{R_P}= \dfrac{1 + 5}{50}

 \tt :  \implies \dfrac{1}{R_P}= \dfrac{6}{50}

 \tt :  \implies {R_P}= \dfrac{50}{6}\, \Omega.

\rule{200}3

Condition 2.

  • ✎ When we connect 50Ω and 10Ω in Series Combination.

 \tt  \dagger \:  \:  \:  \:  \: {R_s}= {R_1}+{R_2}+...{R_n}

 \tt :   \implies{R_s}= 10 + 50 \, \Omega.

 \tt :   \implies{R_s}= 60 \, \Omega.

Let's Find, Current.

  • Current ( I )
  • We know, Ohm' s Law.
  • V = IR.
  • Voltage ( V )
  • Resistance ( R )

☛ Case 1.

  • Rp = 50 / 6.

 \tt  :  \implies  V = IR.

 \tt  :  \implies  6 = I \times  \dfrac{50}{6} .

 \tt  :  \implies  6  \times  \dfrac{6}{50} = I

 \tt  :  \implies   I  =  \dfrac{36}{50} .

 \tt  :  \implies   I  =  0.72\, A .

\rule{200}1

☛ Case 2.

 \tt  :  \implies  V = IR.

 \tt  :  \implies  6= I \times 60.

 \tt  :  \implies   \dfrac{1}{10} = I

 \tt  :  \implies   I  =  0.1\,A .

\rule{200}3

  • ( i ) When we connect 50Ω and 10Ω in parellel Combination.( Maximum Current )
  • ( ii ) When we connect 50Ω and 10Ω in Series Combination.( Minimum Current )
  • ( a ) Series and parellel
  • ( b ) I = 0.72 A.
Answered by Anonymous
7

SolutioN :

R1 = 50Ω.

R2 = 10Ω.

Condition 1.

✎ When we connect 50Ω and 10Ω in Parellel Combination.

Similar questions