Physics, asked by yeasin1333, 1 year ago

Two reversible heat engines a and b are arranged in series, a rejecting heat directly to b. Engine a receives 200 kj at a temperature of 421c from a hot source, while engine b is in communication with a cold sink at a temperature of 4.4c. If the work output of a is twice that of b, find (a) the intermediate temperature between a and b

Answers

Answered by kchidanandam000
1

Explanation:

i hope u understand.please check it according to question

Attachments:
Answered by aburaihana123
1

The intermediate temperature between two reversible heat engine  is 143.3 C

Step by step explanation:

Given:

Engine receives 200 kj at a temperature of 421 c.

Communication with cold sink at a temperature is 4.4 c

To find: Temperature between A and B

                             T_{1}  (421 c)

                              ↓  (Q_{1}  = 200 kj)

                            Heat engine A (WA)

                               ↓  T_{2}  = ?

                             Heat engine B(WB)

                                 ↓ Q_{3}

                               T_{3}  = 4.4 c

W_{A} = 2Wx_{B}

Now,

\frac{W_{A}}{Q_{1} }  = \frac{T_{2} -T_{1}}{T_{1} }      

W_{A}= [\frac{T_{2} T_{1} }{T_{1} }  ](Q_{1} )      

\frac{W_{B}}{Q_{2} }  = \frac{T_{2} -T_{3}}{T_{2} }

W_{B}= [\frac{T_{2} T_{3} }{T_{2} }  ](Q_{1}  - W_{A} )    

Now substitute the values in the equation

W_{A} = 2 [ \frac{(T_{2}  - T_{3} }{T_{2} }](Q_{1} -  W_{A}   )

[\frac{T_{2} }{2(T_{2} -  T_{3})   }  + 1] W_{A}  = Q_{1}

Substitute the values then we get,

[\frac{T_{2} }{2(T_{2} -  T_{3})   }  + 1] [\frac{T_{T}  - T_{2} }{T_{1} } ]Q_{1}  = Q_{1}

[\frac{T_{2} }{2T_{2} -  2T_{3})   }  ] = \frac{T_{1} }{T_{1} T_{2} }  = \frac{T_{2} }{T_{1}  - T_{2} }

T_{1}  - T_{2} = 2T_{2} - 2T_{3}

T_{2} = \frac{T_{1} + 2T_{3}  }{3}

(694 +2 (277.4))/3

⇒ 416.267 K

⇒ 143.3 c

Final answer:

The intermediate temperature between A and B is 143.3 C

#SPJ3

Similar questions