Physics, asked by user09283, 9 months ago

Two rods A and B of same cross-sectional area A and length L connected in series between a source(T1 = 100° C) and a sink(T2 = 0° C) as shown in figure. The rod is laterally insulated. The ratio of the thermal resistance of the rod is?​

Attachments:

Answers

Answered by BrainlyConqueror0901
30

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\frac{R_{A}}{R_{B}}=\frac{1}{3}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  : \implies  T_{1} = 100^{ \circ}  \: C \\  \\  : \implies  T_{2} = 0^{ \circ}  \: C \\  \\   : \implies  L_{1} =  L_{2} = L \\  \\ : \implies  A_{1} =  A_{2} = A \\  \\ \red{ \underline \bold{To \: Find : }} \\   : \implies  \frac{ R_{A}}{ R_{B} }  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\   \circ \:  \text{Thermal \: resistance (R) }=  \frac{ \text{Length(l)}}{ \text{Thermal \: conductivity(k)} \times  \text{Cross \: section \: area(A)}}  \\  \\   : \implies  R_{A} =  \frac{ l_{1} }{ k_{1}  \times  A_{1} }  \\  \\ : \implies  R_{A} = \frac{l}{3k \times A}  - -  -  -  - (1) \\  \\  \bold{for \: R_{B} : } \\  : \implies  R_{B} =  \frac{ l_{2} }{ k_{2}  \times  A_{2} }  \\  \\ : \implies  R_{B} = \frac{l}{k \times A}  - -  -  -  - (2) \\   \\  \bold{Dividing \:(2) \: upon \: (1)} \\   : \implies \frac{ R_{A}}{R_{B} }  =  \frac{ \frac{l}{3k \times A} }{ \frac{l}{k \times A} }  \\  \\ : \implies \frac{ R_{A}}{R_{B} }  =  \frac{l \times k \times A}{l \times 3k \times A}  \\  \\ \green{ : \implies \frac{ R_{A}}{R_{B} }  =  \frac{1}{3} }

Similar questions