Math, asked by madhura4536, 8 months ago

two roots of quadratic equations are given frame the equation ​

Attachments:

Answers

Answered by Anonymous
57

Let \:  \alpha  \: and \:  \beta  \: be \: the \: roots \: of \: the \: quadratic \: equation \\  \\Let \:  \alpha  = 1 - 3 \sqrt{5}  \: and \:  \beta  = 1 + 3 \sqrt{5}  \\ \\   \alpha  +  \beta  = 1 - 3 \sqrt{5}  + 1 + 3 \sqrt{5}  \\  = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \alpha  \times  \beta  = (1 - 3 \sqrt{5}) \times (1 + 3 \sqrt{5} ) \\  =  {1}^{2}  - (3 \sqrt{5})^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  = 1 - 9 \times 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  = 1 - 45 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  = 44 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\

Then the required quadratic equation is

 {x}^{2}  - ( \alpha  +  \beta ) \: x  \:  +   \:  \alpha  \beta  \:  = 0 \\  {x}^{2}  \:  -   \: 2 \: x \:  - 44 = 0

{x}^{2} - 2 x - 44 = 0 is the equation formed.

Similar questions