Physics, asked by aaryangoyal4168, 10 months ago

Two satellites, A and B, have masses m and 2m respectively. A is in a circular orbit of radius R, and B is in a circular orbit of radius 2R around the earth. The ratio of their kinetic energies, T_(A)//T_(B), is :

Answers

Answered by Anonymous
1

Answer:

heya mate image attached hope help u ...

Attachments:
Answered by Theopekaaleader
1

Explanation:

</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1</p><p></p><p>Solve the following by both substitution and elimination methods.</p><p></p><p>2x - \sqrt{2} y = 02x− </p><p>2</p><p>	</p><p> y=0</p><p></p><p>and</p><p></p><p>\frac{3x}{ \sqrt{2} } - y = 1 </p><p>2</p><p>	</p><p> </p><p>3x</p><p>	</p><p> −y=1

Similar questions