Physics, asked by krishiras1209, 6 months ago

Two satellites A and B revolve round a planet in circular orbits of radii R and 4R respectively. The ratio of their orbital velocities is( 1 )1 : 2( 2 )2 : 1( 3 )1 : 4( 4 )4 : 1

Answers

Answered by Tuktuki21
3

Answer:

1. The respective speeds of five molecules are 2, 1.5, 1.6, 1.6 and 1.2kms−1, the most probable speed in kms−1 will be.

Answered by CUTEPASTRY
2

\displaystyle\large\underline{\sf\red{Given}}

✭ Mass of two Satellites are of the ratio 3:1

✭ Radii of their circular orbit are in the ratio 1:4

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ Ratio of their total mechanical energy?

\displaystyle\large\underline{\sf\gray{Solution}}

So here to find the total energy we may use,

\displaystyle\sf \underline{\boxed{\sf Total \ Energy = \dfrac{-GMm}{2r}}}

Also let the two Bodies be A & B

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

We are given that,

\displaystyle\sf \dfrac{m_1}{m_2} = \dfrac{3}{1}

And,

\displaystyle\sf \dfrac{r_1}{r_2} = \dfrac{1}{4}

So then their total energy (E) will be,

\displaystyle\sf E_A = \dfrac{-GMm_1}{2r_1}

And

\displaystyle\sf E_B = \dfrac{-GMm_2}{2r_2}

\displaystyle\sf \dfrac{\dfrac{-GMm_1}{2r_1}}{\dfrac{-GMm_2}{2r_2}}

\displaystyle\sf \dfrac{m_1}{r_1} \times \dfrac{r_2}{m_2}

\displaystyle\sf \dfrac{m_1}{m_2} \times \dfrac{r_2}{r_1}

\displaystyle\sf \dfrac{3}{1}\times \dfrac{4}{1}

\displaystyle\sf \dfrac{3\times4}{1}

\displaystyle\sf\pink{\dfrac{E_A}{E_B} = \dfrac{12}{1}}

\displaystyle\sf \therefore\:\underline{\sf Their \ Ratio \ will \ be \ E_A:E_B = 12:1}

━━━━━━━━━━━━━━━━━

Similar questions