Math, asked by kaurtashleen1, 4 months ago

Two sides of a triangular field ase 85m and
154m in length and its perimeter is 324m
And the area of the field.​

Answers

Answered by ShírIey
68

Given that,

  • Two sides of a triangular field are 85 m and 154 m.

We've to find out third side.

⠀⠀⠀

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀

☯ Let the third side be x m.

  • Given that, Perimeter of triangular filed is 324 m.

:\implies\sf 85 + 154 + x = 324 \\\\\\:\implies\sf 239 + x = 324 \\\\\\:\implies\sf  x = 324 - 239\\\\\\:\implies{\underline{\boxed{\frak{\pink{x = 85 \ m}}}}}

Hence, third side of the rectangular field is 85 m.

⠀⠀⠀⠀

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀

\qquad\quad\boxed{\bf{\mid{\overline{\underline{\pink{\bigstar\: Using \ Heron's \ Formula \ :}}}}}\mid}\\\\

⠀⠀⠀⠀

\bf{Sides}\begin{cases}\sf{\:\: a = 85 \ m}\\\sf{\ \ b = 154 \ m}\\\sf{\ \ c = 85 \ m}\end{cases}

⠀⠀⠀⠀

:\implies\sf S_{\:(Semiperimeter)} = \dfrac{a + b + c}{2}  \\\\\\:\implies\sf  S_{\:(Semiperimeter)} = \dfrac{85 + 154 + 85}{2}  \\\\\\:\implies\sf  S_{\:(Semiperimeter)} = \cancel\dfrac{342}{2} \\\\\\:\implies{\underline{\boxed{\frak{\pink{S_{\:(Semiperimeter)}  = 162 \ m }}}}}

⠀⠀⠀⠀

\star\:\boxed{\sf{\purple{ Area = \sqrt{s(s - a)  \ (s - b)  \ (s - c)}}}}

⠀⠀⠀⠀

:\implies\sf Area = \sqrt{162(162 - 85) (162 - 154) (262 - 85)} \\\\\\:\implies\sf Area = \sqrt{ 162 \times 77 \times 8 \times 77} \\\\\\:\implies\sf Area = \sqrt{ 2 \times 9 \times 9 \times 7 \times 11 \times 2 \times 2 \times 2 \times 7 \times 11} \\\\\\:\implies\sf Area = \sqrt{11 \times 9 \times 7 \times 2 \times 2} \\\\\\:\implies{\underline{\boxed{\frak{\purple{Area = 2772 \ m^2}}}}} \ \bigstar

⠀⠀⠀⠀

\therefore\:{\underline{\sf{Hence,\: Area \ of \ the \ triangular \ field \:is\;\bf{2772 \ m^2}.}}}

Answered by Anonymous
72

\huge\star\:\:{\orange{\underline{\pink{\mathbf{Answer}}}}}

\:\sf\underline\green{Question\:Given}\:

  • Two sides of a triangular field are 85m and 154m in length and its perimeter is 324m And the area of the field.

\:\sf\underline\blue{Given\: parameters}\:

  • One side of the triangular field is 85 m
  • Third side measures 154 m
  • The perimeter of the field is 324 m

\:\sf\underline\orange{To\:find}\:

  • The third side
  • The area of the field

\:\sf\underline\red{Formulas\:used}\:

  • Perimeter of triangle = Sum of all sides
  • Area of a triangle = \sf\:\sqrt{s(s\:-\:a)(s\:-\:b)(s\:-\:c)}

  • Semi perimeter = \sf\dfrac{a\:+\:b\:+\:c}{2}

\:\sf\underline\pink{Required\: solution}\:

If we assume the third side as x then we get ,

  • Perimeter = Sum of all sides
  • 324 = 85 + 154 + x
  • 324 = 239 + x
  • 324 - 239 = x
  • 85 m = x

As we have found the length of the third side

Let us find the semi perimeter ,

  • Semi perimeter = \sf\dfrac{a\:+\:b\:+\:c}{2}

  • S = \sf\dfrac{85\:+\:154\:+\:85}{2}

  • S = \sf\dfrac{324}{2}

  • S = 162 m

Now substitute the value of s in the Heron's formula .

We get the following result ,

  • Area = \sf\:\sqrt{s(s\:-\:a)(s\:-\:b)(s\:-\:c)}

  • \sf\:\sqrt{162\:(162\:-\:85)\:(162\:-\:154)\:(162\:-\:85)}

  • \sf\:\sqrt{162\:(77)\:(8)\:(77)}

  • Area = 2772 m²
Similar questions