Physics, asked by aakashdabhane123, 11 months ago

Two simple pendulum, used at the same place have time period in the ratio of 1:15. If length of first pendulum is 0.75m, find the length of second's pendulum.​

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Length\:of\:second\:pendulum=168.75\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Ratio \: of \: time \: period = 1 : 15 \\  \\ \tt: \implies Length \: of \: first \: pendulum = 0.75 \: m \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt: \implies Length \: of \: second \: pendulum = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{ T_{1} }{T_{2}} =  \huge{\frac{ \sqrt{ \frac{ l_{1} }{g} } }{ \sqrt{ \frac{ l_{2} }{g} } } }  \\  \\  \tt \circ \: Where \: g \: is \: acceleration \: due \: to \: gravity \\  \\  \tt:  \implies  \frac{1}{15}  =   \huge{\bigg( \frac{ \frac{ l_{1}}{g}}{ \frac{ l_{2} }{g} }  \bigg)^{ \frac{1}{2} }}  \\  \\ \tt:  \implies  (\frac{1}{15})^{2}  =  \frac{ l_{1}}{g}  \times  \frac{g}{ l_{2}}  \\  \\ \tt:  \implies  \frac{1}{225}  =  \frac{0.75}{ l_{2}}  \\  \\ \tt:  \implies  l_{2} = 0.75 \times 225 \\  \\  \green{\tt:  \implies  l_{2} =168.75 \: m}

Similar questions