Physics, asked by anantmittalan2682, 1 year ago

Two sinusoidal waves given below are superposed y1= a sin (kx-wt+π/6) & y2= a sin(kx-wt-π/6) equation of resultant wave is

Answers

Answered by lidaralbany
34

Answer: y_{1} + y_{2} = a\sqrt3\ sin(kx-\omega t)

Explanation:

Given that,

y_{1} = a sin(kx-\omega t +\dfrac{\pi}{6})

y_{2} = a sin(kx-\omega t -\dfrac{\pi}{6})

Suppose that,

A = kx-\omega t +\dfrac{\pi}{6}

B = kx-\omega t -\dfrac{\pi}{6}

Now,

A+B = 2(kx-\omga t)

\dfrac{A+B}{2} = kx-\omega t

A-B = 2(\dfrac{\pi}{6})

\dfrac{A-B}{2} = \dfrac{\pi}{6}

The resultant wave  is

y_{1} +y_{2} = a sin(kx-\omega t + \dfrac{\pi}{6}) + a sin(kx-\omega t - \dfrac{\pi}{6})

y_{1}+y_{2} = a(sinA+sinB).....(I)

General equation is

SinA+SinB = 2 sin(\dfrac{A+B}{2}) cos (\dfrac{A-B}{2})

Put the value of Sin A+ Sin B in equation (I)

y_{1} + y_{2} = a[2sin(\dfrac{A+B}{2}) cos(\dfrac{A-B}{2})]

Now, put the value of \dfrac{A+B}{2} and \dfrac{A-B}{2}

y_{1} + y_{2} = a[2sin(kx-\omega t) cos(\dfrac{\pi}{6})]

y_{1} + y_{2} = a[2sin(kx-\omega t) \times\dfrac{\sqrt 3}{2}]

y_{1} + y_{2} = a\sqrt3\ sin(kx-\omega t)

Hence, the resultant wave is y_{1} + y_{2} = a\sqrt3\ sin(kx-\omega t).

Answered by mindfulmaisel
8

"Given:

y_1 = a sin (kx -\omega t + \frac {\pi}{6})

y_2 = a sin (kx -\omega t - \frac {\pi}{6})

Take,

A = kx-\omega t + \frac {\pi}{6}

B = kx-\omega t - \frac {\pi}{6}

Now, A+B = 2(kx -\omega t)

     \frac { (A+B) }{ 2 } = kx -\omega t

A-B = 2\left( \frac { \pi }{ 6 } \right)

\frac {(A-B) }{2}=\frac{ \pi }{ 6 }

Hence the resultant wave is,

y_1 + y_2 = a sin (kx -\omega t + \frac {\pi}{6} ) + a sin (kx -\omega t - \frac {\pi}{6})

y_1 + y_2 = a (sin A + sin B) .....(I)

The general equation is

SinA+sinB=2sin\left( \frac { (A+B) }{ 2 } \right) cos\left( \frac { (A-B) }{ 2 } \right)

Put the value of Sin A + Sin B in equation (I)

y_1 + y_2 = a[2sin\left( \frac { (A+B) }{ 2 } \right) cos\left( \frac { (A-B) }{ 2 } \right)]

Now, put the value of  (\frac { (A+B) }{ 2 } \right)) and (\frac { (A-B) }{ 2 } \right)))

y_1 + y_2 = a [2sin (kx - \omega t) cos (\frac {\pi}{6})]

y_1 + y_2 = a [2sin (kx - \omega t ) \times\frac {\sqrt { 3 }}{2} ]

y_1 + y_2 = a\sqrt3 sin (kx - \omega t )

Hence, the resultant \omegawave is

y_1 + y_2 = a\sqrt3 sin (kx - \omega t )."

Similar questions