Physics, asked by molu200156, 1 year ago

Two slits separated by 2.00 × 10–5 m are illuminated by light of wavelength 625 nm. If the screen is 6.00 m from the slits, what is the distance between the m = 0 and m = 1 bright fringes.

Please show working thank you

Answers

Answered by Anonymous
5

\underline{ \mathfrak{\huge{\boxed{\fcolorbox{purple}{orange}{\purple{Answer\::-}}}}}} \\  \\  \dagger \rm \:  \red{Given} \begin{cases} \star \rm \: d = 2 \times  {10}^{ - 5}m \\  \star \rm \:  \lambda = 625 \times  {10}^{ - 9}  m \\  \star \rm \: D = 6 \: m \end{cases}  \\  \\  \dagger \rm \:  \red{To \: Find} \\  \\  \implies \rm \: distance \: between \: two \: bright \: fringes ... \\  \\  \dagger \rm \:  \red{Formula} \\  \\  \implies \rm \: distance \: between \: two \: bright \: fringes \\  \rm \: is \: given \: by... \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \star \:  \underline{ \boxed{ \bold{ \rm{ \purple{ \beta =  \frac{ \lambda{D}}{d} }}}}} \:  \star \\   \\  \dagger \rm \:  \red{Calculation} \\  \\  \leadsto \rm \:  \beta =   \frac{625 \times  {10}^{ - 9}  \times 6}{2 \times  {10}^{ - 5} }  \\  \\  \leadsto \rm \:  \beta = 1875 \times  {10}^{ - 4} \: m  \\  \\  \star \:  \boxed{ \bold{ \rm{ \orange{ \beta = 18.75 \: cm}}}} \:  \star

Similar questions