Math, asked by nikunjrastogi75, 1 year ago

Two solid Spheres made of the same metal have weights 5920 g and 740 g respectively. Determine the radius of the larger sphere, if the diameter of the smaller one is 5 cm

Answers

Answered by Avengers00
19
<b>

\huge\red{Answer:}

Let volume of heavier sphere be V_{1}
& volume of lighter sphere be V_{2}

Let radii of heaviersphere be r_{1}
& radii of lighter sphere be r_{2}

Given,

Weight of heavier sphere= 5920 g
& weight of lighter sphere = 740 g

We have,
 weight = density × Volume

So
\frac{Weight\: of\: heavier\: sphere}{weight\: of\: lighter\: sphere} = \frac{density×V_{1}}{density×V_{2}}

As sphere is made of same metal,

\frac{Weight\: of\: heavier\: sphere}{weight\: of\: lighter\: sphere} = \frac{V_{1}}{V_{2}}

\frac{5920}{740} = \frac{\frac{4}{3}×\pi×r_{1}^{3}}{\frac{4}{3}×\pi×r_{2}^{3}}

8= \frac{r_{1}^{3}}{r_{2}^{3}}

Given d_{2}=5
=> r_{2}=\frac{5}{2}

r_{1}^{3} = (\frac{5}{2})^{3}×8

r_{1}^{3} = 125

r_{1} = 5

Hence,
The radius of larger sphere is 5 cm ✓✓✓

\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Keep\: it\: Mello}}}

Answered by pketan76
2

so I think you will be comfortable with my hand writing

please follow me to get practice work answers for maths

Attachments:
Similar questions
Math, 1 year ago