Math, asked by chandankumar3me, 8 months ago

. Two solids of right cylindrical shape are 49 cm and
35 cm high and their base diameters are 16 cm and
14 cm respectively. Both are melted and moulded
into a single cylinder. If the height of new cylinder is
99 cm, find the diameter of the base of the cylinder.​

Answers

Answered by Himanidaga
6

Answer:

Hope it helps you..............

Attachments:
Answered by SarcasticL0ve
3

GivEn:

  • Diameter of 1st cylinder, \sf d_1 = 16 cm
  • Radius of 1st cylinder, \sf r_1 = 8 cm
  • Diameter of 2nd cylinder, \sf d_2 = 14 cm
  • Radius of cylinder, \sf r_2 = 7 cm
  • Height of 1st cylinder, \sf h_1 = 49 cm
  • Height of 2nd cylinder, \sf h_2 = 35 cm
  • Height of new cylinder, h = 99 cm

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Base diameter of new cylinder

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

\dag\;{\underline{\frak{We\;know\;that,}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Volume_{\;(cylinder)} = \pi r^2 h_1}}}}

⠀⠀⠀⠀⠀⠀⠀

Therefore,

{\underline{\sf{\bigstar\;Volume\;of\;1st\;cylinder\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \pi (r_1)^2 h

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Putting\;values,}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{22}{7} \times 8 \times 8 \times 49

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{22}{ \cancel{7}} \times 8 \times 8 \times \cancel{49}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 22 \times 8 \times 8 \times 7

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{9856\;cm^3}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Volume\;of\;2nd\;cylinder\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \pi (r_2)^2 h_2

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Putting\;values,}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{22}{7} \times 7 \times 7 \times 35

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{22}{ \cancel{7}} \times 7 \times 7 \times \cancel{35}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 22 \times 7 \times 7 \times 5

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{5390\;cm^3}}}}}\;\bigstar

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\bf{\mid{\overline{\underline{\bigstar\: According\: to \: the \: Question :}}}}\mid}

⠀⠀⠀⠀⠀⠀⠀

☯ Both cylinders are melted and moulded into a single cylinder.

⠀⠀⠀⠀⠀⠀⠀

Therefore,

\star\;\sf Volume\;of\;new\;cylinder = Volume\;of\;1st\;cylinder + Volume\;of\;2nd\;cylinder

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 9856 + 5390

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{15246\;cm^3}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

☯ Let radius of new cylinder be r cm.

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Putting\;values,}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 15246 = \dfrac{22}{7} \times r^2 \times 99

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 15246 = \dfrac{2178}{7} \times r^2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf r^2 = \dfrac{15246 \times 7}{2178}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf r^2 = \dfrac{106722}{2178}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf r^2 = \cancel{ \dfrac{106722}{2178}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf r^2 = 49

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{r^2} = \sqrt{49}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\red{r = 7\;cm}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

Therefore,

★ Diameter of new cylinder = 2 × 7 = 14 cm

⠀⠀⠀⠀⠀⠀⠀

\therefore Hence, Diameter of new cylinder is 14 cm.

Similar questions