Math, asked by swayamswagatsethy, 10 days ago

Two solids of right cylindrical shape are 49 cm and 35 cm high and their base diameters are 16 cm, 14 cm respectively. Both are melted and moulded into a single cylinder, 56 cm high. Find its base diameter. ​

Answers

Answered by devanshu1234321
63

QUESTION-:

Two solids of right cylindrical shape are 49 cm and 35 cm high and their base diameters are 16 cm, 14 cm respectively. Both are melted and moulded into a single cylinder, 56 cm high. Find its base diameter. ​

EXPLANATION-:

Here let [FOR THE FIRST CYLINDER]-:

d₁=16 cm[r₁=8 cm]

→h₁=49 cm

→v₁=?

Similarly for the second one-:

→d₂=14 cm[r₂=7 cm]

→h₂=35 cm

→v₂=?

Now we know that-:

\leadsto \underline{\boxed{\ddag \bf\;v_{(cylinder)}=\pi r^2h}}

Where-:

r is radius

h is height

Putting the values in the formula to get volumes-:

\rightarrow \bf\; v_1=\pi (8^2\times49)\\\\\rightarrow \bf\; v_1=3136\pi\\\\\rightarrow \bf\;\underline{ \bf\;v_1=9856\;cm^2}

Now calculation v₂

\rightarrow \bf\; v_2=\pi(7^2\times 35)\\\\\rightarrow \bf\; v_2=\pi 1715\\\\\rightarrow \bf\; \underline{\bf\;v_2=5390\;cm^2}

Foe  for now cylinder-:

h=56 cm

Now the new single cylinder will have volume as-:

\leadsto \underline{\boxed{\ddag\bf\;v_{(new)}=v_1+v_2}}\\\\\rightarrow \bf\; v_{(new)}=9856+5390\\\\\rightarrow \underline{\bf\; v_{(new)}=15246\;cm^2}

Now-:

\rightarrow \bf\; v_{(new)}=\pi r^2h\\\\\rightarrow \bf\; 15246=\pi r^256\\\\\rightarrow \bf\; r=\sqrt{\frac{15246}{56\pi}} \\\\\rightarrow \bf\; r=\sqrt{\frac{15246}{176}}} \\\\\rightarrow \bf\; \underline{\bf\; r=9.30\;cm}

So the radius is 9.30 cm

So the diameter will be-:

2r

→2×9.30

\longrightarrow \boxed{\underline{\bf\; d=18.6\;cm}}


MasterDhruva: Awesome!!!!
Answered by SparklingBoy
99

Answer :

Step by Step Explanation :

Here we have,

  • Height of 1st cylinder = h₁ = 49 cm

  • Height of 2nd cylinder = h₂ = 35 cm

  • Height of final cylinder = H = 56 cm

  • Diameter of 1st cylinder = d₁ = 16 cm

  • Diameter of 2nd cylinder = d₂ = 14 cm

  • Diameter of final cylinder = D = ?

Now For 1st cylinder ;

  • Height = h₁ = 49 cm

  • Diameter = d₁ = 16 cm

  • Therefore radius = r₁ = 16/2 = 8 cm

So volume of 1st cylinder is :

 \Large \bigstar  \large  \:  \:  \: \underline{ \boxed{ \bf V_1= \pmb\pi r_1^2h_1}} \\   \\

:\longmapsto \rm V_1 = \pi \times  {8}^{2}  \times49 \\  \\

:\longmapsto \rm V_1 = \pi \times 64 \times 49 \\  \\

 \green{:\longmapsto \bf  \underline{\underline{ \blue{ V_1  = 3136\pi }}}}

Now For 2nd cylinder ;

  • Height = h₂= 35 cm

  • Diameter = d₂ = 14 cm

  • Therefore radius = r₂ = 14/2 = 7 cm

So volume of 2nd cylinder is :

 \Large \bigstar  \large  \:  \:  \: \underline{ \boxed{ \bf V_2= \pmb\pi r_2^2h_2}} \\   \\

:\longmapsto \rm V_2= \pi \times  {7}^{2}  \times35\\  \\

:\longmapsto \rm V_2 = \pi \times 49 \times 25 \\  \\

 \green{:\longmapsto \bf  \underline{\underline{ \blue{ V_2  = 1715\pi }}}}

Now For Final cylinder ;

  • Height = H = 56 cm

  • Let radius be = R

So volume of final cylinder is :

 \Large \bigstar  \large  \:  \:  \: \underline{ \boxed{ \bf V_{(final)}= \pmb\pi R^2H}} \\   \\

:\longmapsto \rm V_{(final)} = \pi \times R^2 \times56 \\  \\

 \green{:\longmapsto \bf  \underline{\underline{ \blue{ V_{(final)}  = 56\pi R^2}}}}

As cylinder 1 and cylinder 2 are melted and moulded into the final cylinder, so, sum of volume of both cylinders will be equals to two volume of final cylinder.

 \\ :\longmapsto \rm  V_1 + V_2=V_{(final)}  \\  \\

:\longmapsto \rm 3136\pi + 1715\pi = 56\pi {R}^{2}  \\  \\

:\longmapsto \rm 4851 \cancel \pi =  56 \times \cancel \pi \times  {R}^{2}  \\  \\

:\longmapsto \rm R {}^{2}  =  \frac{4851}{56}  \\  \\

:\longmapsto \rm R {}^{2}  = 86.625 \\  \\

:\longmapsto \rm R =  \sqrt{86.625}  \\  \\

 \green{:\longmapsto \bf  \underline{\underline{ \blue{R = 9.307 }}}} \\  \\

Therefore Diameter of final cylinder is :

 \:  \:  \rm \: D = 2 \times R \\  \\

:\longmapsto \rm D = 2 \times 9.307 \\  \\

 \large \green{:\longmapsto \bf  \underbrace{\underline{  \:  \: \blue{ D= 18.614 \:  \: }}}}

Hence, diameter of final cylinder is 18.614 cm (approx)


MasterDhruva: Amazing!!!!
Similar questions