Physics, asked by shubhtripathi1438, 8 months ago

Two spherical bodies of masses M

and are 4M kept at separation of d

as shown in figure. Where should we

place a third particle of mass m so

that it will experience a zero net

force? ​

Attachments:

Answers

Answered by RISH4BH
66

\large{\underline{\underline{\red{\tt{\purple{\leadsto } GiveN:-}}}}}

  • Two masses m and 4m .
  • They are kept distance d m apart .

\large{\underline{\underline{\red{\tt{\purple{\leadsto } To\:FinD:-}}}}}

  • The distance at which the third particle of mass m should be placed so that the net force is zero.

\large{\underline{\underline{\red{\tt{\purple{\leadsto } FormulA\:UseD:-}}}}}

We will use universal law of gravitation that is stated as ,

\boxed{\red{\bf{\green{\dag}\:Force=G\dfrac{m_1m_2}{r^2}}}}

where ,

  • r is distance of separation.
  • m1 & m2 are two masses.
  • G is universal gravitational constant.

\large{\underline{\underline{\red{\tt{\purple{\leadsto } AnsweR:-}}}}}

Let us take that the third mass m should be placed at a distance of x from mass m .

Now , the mass m will experience force from both the masses of 4 m and m.

\underline{\blue{\tt{\longmapsto Case\:One: Attraction\: between\:4m\:\&\:m}}}

\tt Here

  • \sf Mass_1 = 4m
  • \sf Mass_2 = m
  • \sf Distance = d - x

\bf \qquad\qquad Force\: exerted:

\tt \implies Force_1=G\dfrac{m_1m_2}{r^2}

\tt \implies Force_1 = G\dfrac{4m\times m}{(d-x)^2}

\boxed{\bf \red{\hookrightarrow} Force_1 = G\dfrac{4m^2}{(d-x)^2}}

\underline{\blue{\tt{\longmapsto Case\:Two: Attraction\: between\:m\:\&\:m}}}

\tt Here

  • \sf Mass_1 = m
  • \sf Mass_2 = m
  • \sf Distance = x

\bf \qquad\qquad Force\: exerted:

\tt \implies Force_2=G\dfrac{m_1m_2}{r^2}

\tt \implies Force_2= G\dfrac{m\times m}{x^2}

\boxed{\bf \red{\hookrightarrow}Force_2 = G\dfrac{m^2}{(x)^2}}

__________________________________

\pink{\sf \purple{\longrightarrow}Now\:to\:net\:force\:to\:be\:0,}

\tt:\implies Force_1=Force_2

\tt:\implies G\dfrac{m^2}{(x)^2}=G\dfrac{4m^2}{(d-x)^2}

\tt:\implies \dfrac{4\cancel{m^2G}}{\cancel{m^2G}}=\dfrac{(d-x)^2}{x^2}

\tt:\implies 4=\dfrac{(d-x)^2}{x^2}

\tt:\implies \bigg\lgroup \dfrac{d-x}{x}\bigg\rgroup^2 =2^2

\tt:\implies \dfrac{d-x}{x}=2

\tt:\implies d-x=2x

\tt:\implies d = 2x + x

\tt:\implies 3x = d

\underline{\boxed{\red{\tt{\longmapsto\:\:\:\:x\:\:=\:\:\dfrac{d}{3}}}}}

\boxed{\green{\bf\pink{\dag}\:Hence\:it\:should\:be\:placed\:at\:a\: distance\:of\:\bf{\dfrac{d}{3}}}}

Attachments:
Answered by Vrindaback
8

Explanation:

here's the answer please mark as brainliest and follow me

Attachments:
Similar questions