Physics, asked by Yatin5726, 1 year ago

Two springs a and b (ka=2kb) are stretched by applying forces of equal magnitudes at the ends if the energy stored in a is e then energy stored b is

Answers

Answered by ShivamKashyap08
14

Answer:

  • Energy (U) Stored in Spring B is 2E Joules.

Given:

  1. Relation of Spring Constants \large{\tt K_a = 2K_b}.
  2. Energy stored in the Spring "A" = E.

Explanation:

\rule{300}{1.5}

From the Spring Energy Formula,

\large\bigstar \: {\boxed{\tt U = \dfrac{1}{2}Kx^2}}

\bold{Here}\begin{cases}\text{U Denotes Potential Energy} \\ \text{K Denotes Spring Constant} \\ \text{x Denotes Displacement}\end{cases}

\large{\boxed{\tt U = \dfrac{1}{2}Kx^2}}

Now,

\large{\tt \hookrightarrow U \propto Kx^2}

I.e. Spring Potential Energy is Directly proportional to Spring constant & Displacement.

Now,

\large{\tt \hookrightarrow \dfrac{U_a}{U_b} = \dfrac{K_ax^2}{K_bx^2}}

  • \large{\tt U_a = E}
  • \large{\tt U_b = U}

\large{\tt \hookrightarrow \dfrac{E}{U} = \dfrac{K_ax^2}{K_bx^2}}

Here the Displacement will be same.

\large{\tt \hookrightarrow \dfrac{E}{U} = \dfrac{K_a\cancel{x^2}}{K_b\cancel{x^2}}}

\large{\tt \hookrightarrow \dfrac{E}{U} = \dfrac{K_a}{K_b}}

Now, Substituting the values of Spring constants.

\large{\tt \hookrightarrow \dfrac{E}{U} = \dfrac{K_a}{2K_a}}

\large{\tt \hookrightarrow \dfrac{E}{U} = \cancel{\dfrac{K_a}{2K_a}}}

\large{\tt \hookrightarrow \dfrac{E}{U} = \dfrac{1}{2}}

Cross - Multiplying it,

\large{\tt \hookrightarrow U \times 1 = 2 \times E}

\large{\tt \hookrightarrow U  = 2 \times E}

\huge{\boxed{\boxed{\tt U = 2E \: J}}}

Energy (U) Stored in Spring B is 2E Joules.

\rule{300}{1.5}

Similar questions