Math, asked by Pradum1234, 1 year ago

two square have sides x cm and (x+4) cm. the sum of their areas is 656 cm square. find the sides of the squares.

Answers

Answered by Anonymous
8

 {(x)}^{2}  +  {(x + 4)}^{2}  = 656 \\  {x}^{2}  +  {x}^{2}  + 16 + 8x = 656 \\ 2 {x}^{2}  + 16 + 8x = 656 \\  {2x}^{2}  + 8x = 640 \\ 2x(x + 4) = 640 \\ x(x + 4) = 320
now, putting 16 in place of x,we get-
16(16 + 4) = 320 \\ 16 \times 20 = 320 \\ 320 = 320
therefore,x=16 and sides are 16 and 20
Answered by Anonymous
15

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Here we have,

As we know that :-

Area of square = a²

(Here a² = side of square)

Given,

\textbf{\underline{Two\;squares\;of\;sides}}

= (x , x + 4)

Now,

\textbf{\underline{Area\;of\;square :-}}

= (x)²

Hence we get

\textbf{\underline{Area\;of\;square :-}}

= x² cm²

Now,

Again

\textbf{\underline{Area\;of\;square :-}}

= (x + 4)²

Now,

We know that

(a + b)² = a² + b² + 2ab

Area of square of side x cm

(x² + 4 + 8x)

(x + 4) = x² + 16 + 8x

Also,

{\boxed{\sf\:{Sum\;of\;area\;of\;both\;squares = 656 cm^2}}}

x + x + 4 = 656 cm²

x² + x² + 16 + 8x = 656 cm²

2x² + 16 + 8x = 656

2x² + 8x + 16 - 656 = 0

2x² + 8x - 640 = 0

x² + 4x - 320 = 0

Now,

x² + (20 - 16)x - 320 = 0

x² + 20x - 16x - 320

x(x + 20) - 16(x + 20) = 0

(x + 20)(x - 16) = 0

Hence,

x + 20 = 0

x = - 20

Also,

x - 16 = 0

x = 16

\textbf{\underline{(Negative\;value\;is\;not\; applicable)}}

x = 16

\textbf{\underline{Length\;of\;sides\;of\;squares}}

x = 16 cm

x + 4 = 16 + 4 = 20 cm

Similar questions